Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-23T02:45:06.907Z Has data issue: false hasContentIssue false

The module structure of Solomon's descent algebra

Published online by Cambridge University Press:  09 April 2009

Dieter Blessenohl
Affiliation:
Mathematisches Seminar der Universität, Ludewig-Meyn-Str.4, D–24098 Kiel, Germany e-mail: [email protected], [email protected]
Hartmut Laue
Affiliation:
Mathematisches Seminar der Universität, Ludewig-Meyn-Str.4, D–24098 Kiel, Germany e-mail: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A close connection is uncovered between the lower central series of the free associative algebra of countable rank and the descending Loewy series of the direct sum of all Solomon descent algebras Δn, n ∈ ℕ0. Each irreducible Δn-module is shown to occur in at most one Loewy section of any principal indecomposable Δn-module.A precise condition for his occurence and formulae for the Cartan numbers are obtained.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2002

References

[1] Atkinson, M. D., ‘Solomon's descent algebra revisited’, Bull. London. Math. Soc. 24 (1992), 545ߝ551.CrossRefGoogle Scholar
[2] Bahturin, Y. A., Identical relations in Lie algebras (VNU Science Press, Utrecht, 1987).Google Scholar
[3] Blessenohl, D. and Laue, H., ‘Algebraic combinatorics related to the free Lie algebra’, in: Actes 29 e Séminaire Lotharingien (Publ.I. R. M. A., Strasbourg, 1993) pp. 1ߝ21.Google Scholar
[4] Blessenohl, D., ‘On the descending Loewy series of Solomon's descent algebra’, J. Algebra 180 (1996), 698ߝ724.CrossRefGoogle Scholar
[5] Dornhoff, L., Group representation theory, part B (Marcel Dekker, New York, 1972).Google Scholar
[6] Garsia, A. M. and Reutenauer, C., ‘A decomposition of Solomon's descent algebra’, Adv. Math. 77 (1989), 189ߝ262.CrossRefGoogle Scholar
[7] Gelfand, I. M., Krob, D., Lascoux, A., Leclerc, B., Retakh, V. S. and Thibon, J.-Y., ‘Noncommutative symmetric functions’, Adv. Math. 112 (1995), 218ߝ348.CrossRefGoogle Scholar
[8] Jennings, S. A., ‘Central chains of ideals in an associative ring’, Duke Math. J. 9 (1942), 341ߝ355.CrossRefGoogle Scholar
[9] Kerber, A., Algebraic combinatorics via finite group actions (BI Wissenschaftsverlag, MannheimWien-Zürich, 1991).Google Scholar
[10] Lothaire, M., Combinatorics on words (Addison-Wesley, Reading, 1983).Google Scholar
[11] Reutenauer, C., Free Lie algebras (Oxford Univ. Press, London, 1993).CrossRefGoogle Scholar
[12] Solomon, L., ‘A Mackey formula in the group ring of a Coxeter group’, J. Algebra 41 (1976), 255ߝ268.CrossRefGoogle Scholar
[13] Witt, E., ‘Treue Darstellung Liescher Ringe’, J. Reine Angew. Math. 177 (1937), 152ߝ160.CrossRefGoogle Scholar