Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T22:40:07.560Z Has data issue: false hasContentIssue false

METRIC DIFFERENTIABILITY OF LIPSCHITZ MAPS

Published online by Cambridge University Press:  15 October 2013

DONATELLA BONGIORNO*
Affiliation:
Università degli studi di Palermo, Dipartimento dell’Energia, Ingegneria dell’Informazione e Modelli Matematici (DEIM), Viale delle Scienze Ed. 9, 90128 Palermo, Italy email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An extension of Rademacher’s theorem is proved for Lipschitz mappings between Banach spaces without the Radon–Nikodým property.

Type
Research Article
Copyright
Copyright ©2013 Australian Mathematical Publishing Association Inc. 

References

Aronszajn, N., ‘Differentiability of Lipschitzian mappings between Banach spaces’, Stud. Math. 57 (1976), 147190.CrossRefGoogle Scholar
Benyamini, Y. and Lindenstrauss, J., Geometric Nonlinear Functional Analysis, Colloquium Publications, 48 (American Mathematical Society, Providence, RI, 2000).Google Scholar
Borwein, J. M. and Moors, W. B., ‘Null sets and essentially smooth Lipschitz functions’, SIAM J. Optim. 8 (1998), 309323.Google Scholar
Christensen, J. P. R., ‘On sets of Haar measure zero in Abelian groups’, Israel. J. Math. 13 (1972), 255260.Google Scholar
Christensen, J. P. R., ‘Measure theoretic zero sets in infinite dimensional spaces and applications to differentiability of Lipschitz mappings’, Publ. Dépt. Math. Lyon 10 (2) (1973), 2939.Google Scholar
Csörnyei, M., ‘Aronszajn null and Gaussian null sets coincide’, Israel J. Math. 111 (1999), 191201.Google Scholar
Diestel, J. and Uhl, J. J. Jr., Vector Measures, Mathematical Surveys, 15 (American Mathematical Society, Providence, RI, 1977).CrossRefGoogle Scholar
Duda, J., ‘Metric and ${w}^{\ast } $-differentiability of pointwise Lipschitz mappings’, Z. Anal. Anwend. 26 (2007), 341362.Google Scholar
Federer, H., Geometric Measure Theory (Springer, Berlin, 1969).Google Scholar
Kenderov, P. S. and Moors, W. B., ‘Fragmentability of groups and metric-valued function spaces’, Topology Appl. 159 (2012), 183193.CrossRefGoogle Scholar
Kirchheim, B., ‘Rectifiable metric spaces: local structure and regularity of the Hausdorff measure’, Proc. Amer. Math. Soc. 121 (1994), 113123.Google Scholar
Mankiewicz, P., ‘On the differentiability of Lipschitz mappings in Fréchet spaces’, Studia Math. 45 (1973), 1529.CrossRefGoogle Scholar
Nekvinda, A. and Zajíček, L., ‘A simple proof of the Rademacher theorem’, Časopis Pěst. Mat. 113 (1988), 337341.CrossRefGoogle Scholar
Phelps, R., ‘Gaussian null sets and differentiability of Lipschitz maps on Banach spaces’, Pacific J. Math. 77 (1978), 523531.CrossRefGoogle Scholar
Preiss, D. and Zajíček, L., ‘Directional derivatives of Lipschitz functions’, Israel J. Math. 125 (2001), 127.Google Scholar
Rademacher, H., ‘Über partielle und totale Differenzierbarkeit I’, Math. Ann. 79 (1919), 254269.Google Scholar
Skorohod, A. V., Integration in Hilbert spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 79 (Springer, New York, 1974).CrossRefGoogle Scholar