Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T20:38:38.763Z Has data issue: false hasContentIssue false

Maximal quotient rings of prime group algebras. II Uniform right ideals

Published online by Cambridge University Press:  09 April 2009

John Hannah
Affiliation:
Department of Mathematics, University of Canterbury, Christchurch, New Zealand.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Suppose KG is a prime nonsingular group algebra with uniform right ideals. We show that G has no nontrivial locally finite normal subgroups. If G is soluble or residually finite, or if K has zero characteristic and G is linear, then the maximal right quotient ring of KG is simple Artinian.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1977

References

Burgess, W. D. (1969), ‘Rings of quotients of group rings’, Canada J. Math. 21, 865875.CrossRefGoogle Scholar
Faith, Carl (1967), Lectures on Injective Modules and Quotient Rings (Lecture Notes in Mathematics, 49, Springer-Verlag, Berlin, Heidelberg, New York, 1967).CrossRefGoogle Scholar
Fisher, Joe W. and Snider, Robert L. (1974), ‘Prime von Neumann regular rings and primitive group algebras’, Proc. Amer. Math. Soc. 44, 244250.CrossRefGoogle Scholar
Formanek, Edward (1974), ‘Maximal quotient rings of group rings’, Pacific. J. Math. 53, 109116.CrossRefGoogle Scholar
Handelman, David and Lawrence, John (1975), ‘Strongly prime rings’, Trans. Amer. Math. Soc. 211, 209223.CrossRefGoogle Scholar
Hannah, John and O'Meara, K. C. (to appear), ‘Maximal quotient rings of prime group algebras’, Proc. Amer. Math. Soc.Google Scholar
Hartley, B. and Richardson, J. S. (submitted), ‘The socle in group rings’.Google Scholar
Hughes, Ian (1973), ‘Artinian quotient rings of group rings’, J. Austral. Math. Soc. 16, 379384.CrossRefGoogle Scholar
Johnson, R. E. (1961), ‘Quotient rings of rings with zero singular ideal’, Pacific J. Math. 11, 13851392.CrossRefGoogle Scholar
Lawrence, John and Louden, Kenneth (submitted), ‘Rationally complete group rings’.Google Scholar
Lewin, Jacques (1972), ‘A note on zero divisors in group-rings’, Proc. Amer. Math. Soc. 31, 357359.CrossRefGoogle Scholar
Passman, D. S. (1974), ‘Advances in group rings’, Israel J. Math. 19, 67107.CrossRefGoogle Scholar
Richardson, J. S. (submitted), ‘Group rings with nonzero socle’.Google Scholar
Robinson, Derek J. S. (1972), Finiteness Conditions and Generalized Soluble Groups Part I (Ergebnisse der Mathematik und ihrer Grenzgebiete, 62. Springer-Verlag, Berlin, Heidelberg, New York, 1972).Google Scholar
Snider, Robert L. (to appear), ‘On the singular ideal of a group algebra’, Comm. Algebra.Google Scholar
Wehrfritz, B. A. F. (1973), Infinite Linear Groups. An account of the group-theoretic properties of infinite groups of matrices (Ergebnisse der Mathematik und ihrer Grenzgebiete, 76. Springer-Verlag, Berlin, Heidelberg, New York, 1973).Google Scholar
Zalesskii, A. E. (1973), ‘On the semisimplicity of a modular group algebra of a solvable group’, Soviet Math. Dokl. 14, 101105.Google Scholar