Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T14:20:30.787Z Has data issue: false hasContentIssue false

Maximal ideal space of function algebras

Published online by Cambridge University Press:  09 April 2009

Jorge Bustamante González
Affiliation:
Universidad Autónoma de Puebla Facultad de Ciencias Fisico Mathematicas Av. San Claudio y 14 Sur Puebla, PUE, CP 72570Mexico e-mail: [email protected]
Raul Escobedo Conde
Affiliation:
Universidad Autónoma de Puebla Facultad de Ciencias Fisico Mathematicas Av. San Claudio y 14 Sur Puebla, PUE, CP 72570Mexico e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a representation theory for the maximal ideal space of a real function algebra, endowed with the Gelfand topology, using the theory of uniform spaces. Application are given to algebras of differentiable functions in a normęd space, improving and generalizing some known results.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1997

References

[1]Bistrom, P., Bjon, S. and Lindstrom, M., ‘Remarks on homomorpohisms on certain subalgebras of C(X)’, Math. Japan. 37 (1992), 105109.Google Scholar
[2]Bistrom, P., Bjon, S. and Lindstrom, M., ‘Homomorphisms on some functions algebras’, Monatsh. Math. 111 (1991), 9397.CrossRefGoogle Scholar
[3]Engelking, R., General topology, Monograf. Math. (Warsaw, 1977).Google Scholar
[4]Gillman, L. and Jerison, M., Rings of continuous functions (Van Nostrand, Princeton, 1960).CrossRefGoogle Scholar
[5]Isbell, J. R., ‘Algebras of uniformly continuous functions’, Ann. of Math. 68 (1958), 96125.CrossRefGoogle Scholar
[6]Jaramillo, J. A. and Llavona, J. G., ‘On the spectrum of ’, Math. Ann. 287 (1990), 531538.CrossRefGoogle Scholar
[7]Jaramillo, J. A. and Llavona, J. G., ‘Homomorphisms between algebras of continuous functions’, Canad. J. Math. XI (1989), 132162.Google Scholar
[8]Nachbin, L., Introduction to functional analysis. Banach spaces and differential calculus (New York, 1981).Google Scholar