Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-23T05:11:32.511Z Has data issue: false hasContentIssue false

LINEAR ORTHOGONALITY PRESERVERS OF HILBERT BUNDLES

Published online by Cambridge University Press:  05 November 2010

CHI-WAI LEUNG*
Affiliation:
Department of Mathematics, The Chinese University of Hong Kong, Hong Kong (email: [email protected])
CHI-KEUNG NG
Affiliation:
Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, PR China (email: [email protected])
NGAI-CHING WONG
Affiliation:
Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A ℂ-linear map θ (not necessarily bounded) between two Hilbert C*-modules is said to be ‘orthogonality preserving’ if 〈θ(x),θ(y)〉=0 whenever 〈x,y〉=0. We prove that if θ is an orthogonality preserving map from a full Hilbert C0(Ω)-module E into another Hilbert C0(Ω) -module F that satisfies a weaker notion of C0 (Ω) -linearity (called ‘localness’), then θ is bounded and there exists ϕ∈Cb (Ω)+ such that 〈θ(x),θ(y)〉=ϕ⋅〈x,y〉 for all x,yE.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2010

Footnotes

The authors were supported by a Hong Kong RGC Research Grant (2160255), the National Natural Science Foundation of China (10771106), and a Taiwan NSC grant (NSC96-2115-M-110-004-MY3).

References

[1]Abramovich, Y. A., Arenson, E. L. and Kitover, A. K., Banach C(K)-Modules and Operators Preserving Disjointness, Pitman Research Notes in Mathematics, 277 (John Wiley & Sons, Inc., New York, 1992).Google Scholar
[2]Alaminos, J., Brešar, M., Černe, M., Extremera, J. and Villena, A. R., ‘Zero product preserving maps on C 1[0,1]’, J. Math. Anal. Appl. 347 (2008), 472481.CrossRefGoogle Scholar
[3]Araujo, J., ‘Linear biseparating maps between spaces of vector-valued differentiable functions and automatic continuity’, Adv. Math. 187 (2004), 488520.CrossRefGoogle Scholar
[4]Araujo, J. and Jarosz, K., ‘Automatic continuity of biseparating maps’, Studia Math. 155 (2003), 231239.CrossRefGoogle Scholar
[5]Blanco, A. and Turnšek, A., ‘On maps that preserve orthogonality in normed spaces’, Proc. R. Soc. Edinburgh A 136 (2006), 709716.CrossRefGoogle Scholar
[6]Chmieliński, J., ‘Linear mappings approximately preserving orthogonality’, J. Math. Anal. Appl. 304 (2005), 158169.CrossRefGoogle Scholar
[7]Dupré, M. J. and Gillette, R. M., Banach Bundles, Banach Modules and Automorphisms of C*-Algebras, Pitman Research Notes in Mathematics, 92 (John Wiley & Sons, Inc., New York, 1983).Google Scholar
[8]Gau, H. L., Jeang, J. S. and Wong, N. C., ‘Biseparating linear maps between continuous vector-valued function spaces’, J. Aust. Math. Soc. (Series A) 74 (2003), 101111.CrossRefGoogle Scholar
[9]Hsu, M. H. and Wong, N. C., ‘Isometric embeddings of Banach bundles’, Taiwanese J. Math., to appear.Google Scholar
[10]Ilišević, D. and Turnšek, A., ‘Approximately orthogonality preserving mappings on C *-modules’, J. Math. Anal. Appl. 341 (2008), 298308.CrossRefGoogle Scholar
[11]Jarosz, K., ‘Automatic continuity of separating linear isomorphisms’, Canad. Math. Bull. 33 (1990), 139144.CrossRefGoogle Scholar
[12]Jeang, J. S. and Wong, N. C., ‘On the Banach–Stone problem’, Studia Math. 155 (2003), 95105.CrossRefGoogle Scholar
[13]Jerison, M., ‘The space of bounded maps into a Banach space’, Ann. of Math. (2) 52 (1950), 309327.CrossRefGoogle Scholar
[14]Kantrowitz, R. and Neumann, M. M., ‘Disjointness preserving and local operators on algebras of differentiable functions’, Glasg. Math. J. 43 (2001), 295309.CrossRefGoogle Scholar
[15]Lance, E. C., Hilbert C *-Modules. A Toolkit for Operator Algebraists, London Mathematical Society Lecture Note Series, 210 (Cambridge University Press, Cambridge, 1995).CrossRefGoogle Scholar
[16]Lau, K. S., ‘A representation theorem for isometries of C(X,E)’, Pacific J. Math. 60 (1975), 229233.CrossRefGoogle Scholar
[17]Leung, C. W., Ng, C. K. and Wong, N. C., ‘Automatic continuity and C 0(Ω)-linearity of linear maps between C 0(Ω)-modules’, J. Operator Theory, to appear.Google Scholar
[18]Narasimhan, R., Analysis on Real and Complex Manifolds, Advanced Studies in Pure Mathematics, 1 (North-Holland, Amsterdam, 1968).Google Scholar
[19]Peetre, J., ‘Réctification à l’article “Une caractérisation abstraite des opérateurs différentiels”’, Math. Scand. 8 (1960), 116120.CrossRefGoogle Scholar
[20]Raeburn, I. and Williams, D. P., Morita Equivalence and Continuous-Trace C *-Algebras, Mathematical Surveys and Monographs, 60 (American Mathematical Society, Providence, RI, 1998).CrossRefGoogle Scholar