Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T12:25:26.415Z Has data issue: false hasContentIssue false

Laguerre geometries and some connections to generalized quadrangles

Published online by Cambridge University Press:  09 April 2009

Matthew R. Brown
Affiliation:
School of Mathematical SciencesUniversity of AdelaideSA [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A Laguerre plane is a geometry of points, lines and circles where three pairwise non-collinear points lie on a unique circle, any line and circle meet uniquely and finally, given a circle C and a point Q not on it for each point P on C there is a unique circle on Q and touching C at P. We generalise to a Laguerre geometry where three pairwise non-collinear points lie on a constant number of circles. Examples and conditions on the parameters of a Laguerre geometry are given.

A generalized quadrangle (GQ) is a point, line geometry in which for a non-incident point, line pair (P. m) there exists a unique point on m collinear with P. In certain cases we construct a Laguerre geometry from a GQ and conversely. Using Laguerre geometries we show that a GQ of order (s. s2) satisfying Property (G) at a pair of points is equivalent to a configuration of ovoids in three-dimensional projective space.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2007

References

[1]Barlotti, A.. ‘Un estensione del teorema di Segre-Kustaanheimo’. Boll. Unione Mat. Ital. 10 (1955). 9698.Google Scholar
[2]Barwick, S. G.. Brown, M. R. and Penttila, T.. ‘Flock generalized quadrangles and tetradic sets of elliptic quadrics of PG(3. q) J. Combin. Theory Ser. A 113 (2006). 273290.Google Scholar
[3]Benz, W.. Vorle sung über Geometrie der Algebren. volume 197 of Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen (Springer Berlin. 1937).Google Scholar
[4]Bose, R. C. and Shrikhande, S. S.. ‘Geometric and pseudo-geometric graphs (q 2 + 1. q + 1. q)’. J. Geom. 2(1972). 7494.CrossRefGoogle Scholar
[5]Brown, M. R.. ‘Projective ovoids and generalized quadrangles’. Adv. Geom. 7 (2007). 6581.CrossRefGoogle Scholar
[6]Buekenhout, F.. ‘Le plans de benz: Une approach unitiée des plans de Moebius. Laguerre et Minkowski’. J Geom. 17 (1981). 6168.Google Scholar
[7]Casse, L. R. A., Thas, J. A. and Wild, P. R.. (q” + 1 )-sets of PG(3n – 1. q). generalized quadrangles and Laguerre planes’. Bull. Belg. Math. Soc. Simon Stevin 59 (1985). 2142.Google Scholar
[8]Chen, Y. and Kaerlein, G.. ‘Eine bemerkung über endliche Laguerre- und Minkowski-Ebenen’, Geom. Dedicata 2 (1973). 193194.Google Scholar
[9]Cherowitzo, W.. ‘Bill Cherowitzo's hyperoval page’, http://www-math.cudenver.edu/-wcherowi/research/hyperoval/hypero.html.Google Scholar
[10]Dembowski, P., Finite Geometries (Springer Berlin. 1968).Google Scholar
[11]Kantor, W. M.. ‘Some generalized quadrangles with parameters (q 2.q).’ Math. Z. 192 (1986). 4550.CrossRefGoogle Scholar
[12]Löwen, R., Topological pseudo-ovals, elation Laguerre planes and elation generalized quadrangles’. Math. Z. 216 (1994), 347369.CrossRefGoogle Scholar
[13]O'Keefe, C. M., ‘Ovoids in PG(3, q): a survey’, Discrete Math. 151 (1996), 175188.Google Scholar
[14]Panella, G., ‘Caratterizzazione dell quadriche di uno spazio (tridimensionale) lineare sopra un corpo finito’. Boll. Unione Mat. Ital. 10 (1955), 507513.Google Scholar
[15]Payne, S. E., ‘A new infinite family of generalized quadrangles’, Congr. Numer. 49 (1985), 115128.Google Scholar
[16]Payne, S. E., ‘An essay on skew translation generalized quadrangles’, Geom. Dedicata 32 (1989), 93118.CrossRefGoogle Scholar
[17]Payne, S. E. and Thas, J. A., ‘Generalized quadrangles with symmetry’, Bull. Belg. Math. Soc. Simon Stevin 49 (1975/1976), 332.Google Scholar
[18]Payne, S. E. and Thas, J. A., ‘Generalized quadrangles with symmetry. II’, Bull. Belg. Math. Soc. Simon Stevin 49 (1975/1976), 81103.Google Scholar
[19]Payne, S. E. and Thas, J. A., Finite Generalized Quadrangles, volume 110 of Research Notes in Mathematics (Pitman, Boston, MA, 1984).Google Scholar
[20]Segre, B.Sulle ovali nei piani lineari finiti’, Atti. Accad. Naz. Lincei. Rendic 17 (1954), 141142.Google Scholar
[21]Segre, B., ‘Ovals in a finite projective plane’, Canad. J. Math. 7 (1955). 414416.CrossRefGoogle Scholar
[22]Segre, B., ‘On complete caps and ovaloids in three-dimensional Galois spaces of characteristic two’, Acta Arith. 5 (1959), 282286.CrossRefGoogle Scholar
[23]Steinke, G. F., ‘On the structure of finite elation Laguerre planes’, J. Geom. 41 (1991). 162179.Google Scholar
[24]Thas, J. A., ‘Generalized quadrangles and flocks of cones’. European J. Combin. 8 (1987). 441452.Google Scholar
[25]Thas, J. A., ‘Generalized quadrangles of order (s, s 2) I’, J Combin. Theory Ser. A 67 (1994), 140160.Google Scholar
[26]Thas, J. A., ‘Generalized polygons’, in: Handbook of Incidence Geometry (ed Buenkenhout, F.) (Elsevier. Amsterdam, 1995) chapter 9. 383431.Google Scholar
[27]Thas, J. A., ‘Generalized quadrangles of order (s, s 2). III’, J. Combin. Theory Ser. A 87 (1999), 247272.Google Scholar
[28]Tits, J.. ‘Sur le trialité et certains groupes qui s'en déduisent’. Inst. Hautes Etudes Sci. Publ. Math. 2(1959). 1460.Google Scholar
[29]Tits, J.., ‘Ovoîdes à translations’, Rendic. Mat. 21 (1962). 3759.Google Scholar