We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
This is a short account of some of the work of L. G. (Laci) Kovács on varieties of groups.
Brisley, W. and Kovács, L. G., ‘On soluble groups of prime-power exponent’, Bull. Aust. Math. Soc.4 (1971), 389–396.CrossRefGoogle Scholar
[2]
Bryant, R. M. and Kovács, L. G., ‘The skeleton of a variety of groups’, Bull. Aust. Math. Soc.6 (1972), 357–378.CrossRefGoogle Scholar
[3]
Bryce, R. A., ‘Metabelian groups and varieties’, Philos. Trans. R. Soc. Lond. Ser. A266 (1970), 281–355.Google Scholar
[4]
Fitzpatrick, P. and Kovács, L. G., ‘Varieties of nilpotent groups of class four. I’, J. Aust. Math. Soc. Ser. A35(1) (1983), 59–73.CrossRefGoogle Scholar
[5]
Gupta, N. D. and Newman, M. F., ‘On metabelian groups’, J. Aust. Math. Soc.6 (1966), 362–368.CrossRefGoogle Scholar
[6]
Hall, P. and Higman, G., ‘On the p-length of p-soluble groups and reduction theorems for Burnside’s problem’, Proc. Lond. Math. Soc. (3)6 (1956), 1–42.CrossRefGoogle Scholar
[7]
Higman, G., ‘Representations of general linear groups and varieties of groups’, Proc. Int. Conf. on Theory of Groups Canberra, 1965 (Gordon and Breach, New York, 1967), 167–173.Google Scholar
[8]
Klyachko, A. A., ‘Varieties of p-groups of a small class’, Ordered Sets and Lattices1 (1971), 31–42.Google Scholar
[9]
Klyachko, A. A., ‘Lie elements in a tensor algebra’, Sib. Math. J.15 (1974), 914–921.Google Scholar
[10]
Kostrikin, A. I., ‘The Burnside problem’, Izv. Akad. Nauk SSSR Ser. Mat.23 (1959), 3–34.Google Scholar
[11]
Kovács, L. G., ‘Varieties and the Hall-Higman paper’, Proc. Int. Conf. on Theory of Groups Canberra, 1965 (Gordon and Breach, New York, 1967), 217–219.Google Scholar
[12]
Kovács, L. G., ‘On the number of varieties of groups’, J. Aust. Math. Soc.8 (1968), 444–446.Google Scholar
[13]
Kovács, L. G., ‘Varieties and finite groups’, J. Aust. Math. Soc.10 (1969), 5–19.Google Scholar
[14]
Kovács, L. G., ‘Varieties of nilpotent groups of small class’, in: Topics in Algebra (Proc. 18th Summer Res. Inst., Austral. Math. Soc., Austral. Nat. Univ., Canberra, 1978, Lecture Notes in Mathematics, 697 (Springer, Berlin, 1978), 205–229.Google Scholar
Kovács, L. G., ‘Classification theorems for torsion-free groups’, in: The Santa Cruz Conference on Finite Groups Univ. California, Santa Cruz, CA, 1979, Proceedings of Symposia in Pure Mathematics, 37 (American Mathematical Society, Providence, RI, 1980), 225–228.Google Scholar
[17]
Kovács, L. G. and Newman, M. F., ‘Cross varieties of groups’, Proc. Roy. Soc. Ser. A292 (1966), 530–536.Google Scholar
[18]
Kovács, L. G. and Newman, M. F., ‘Minimal verbal subgroups’, Proc. Cambridge Philos. Soc.62 (1966), 347–350.Google Scholar
[19]
Kovács, L. G. and Newman, M. F., ‘On critical groups’, J. Aust. Math. Soc.6 (1966), 237–250.CrossRefGoogle Scholar
[20]
Kovács, L. G. and Newman, M. F., ‘Just-non-cross varieties’, Proc. Int. Conf. on Theory of Groups Canberra, 1965 (Gordon and Breach, New York, 1967) 221–223.Google Scholar
[21]
Kovács, L. G. and Newman, M. F., ‘On non-cross varieties of groups’, J. Aust. Math. Soc.12 (1971), 129–144.Google Scholar
[22]
Kovács, L. G. and Newman, M. F., ‘Torsionfree varieties of metabelian groups’, in: Infinite Groups 1994 (Ravello) (de Gruyter, Berlin, 1996), 125–128.Google Scholar
[23]
Kovács, L. G., Newman, M. F. and Pentony, P. F., ‘Generating groups of nilpotent varieties’, Bull. Amer. Math. Soc.74 (1968), 968–971.CrossRefGoogle Scholar
[24]
Kovács, L. G. and Stöhr, R., ‘A combinatorial proof of Klyachko’s theorem on Lie representations’, J. Algebraic Combin.23(3) (2006), 225–230.Google Scholar
[25]
Neumann, B. H., ‘Identical relations in groups. I’, Math. Ann.114(1) (1937), 506–525.Google Scholar