Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T12:55:28.611Z Has data issue: false hasContentIssue false

INVOLUTION GRAPHS WHERE THE PRODUCT OF TWO ADJACENT VERTICES HAS ORDER THREE

Published online by Cambridge University Press:  01 December 2008

ALICE DEVILLERS
Affiliation:
Université Libre de Bruxelles, Département de Mathématiques, Géométrie – CP 216, Boulevard du Triomphe, B-1050 Bruxelles, Belgium (email: [email protected])
MICHAEL GIUDICI*
Affiliation:
School of Mathematics and Statistics, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An S3-involution graph for a group G is a graph with vertex set a union of conjugacy classes of involutions of G such that two involutions are adjacent if they generate an S3-subgroup in a particular set of conjugacy classes. We investigate such graphs in general and also for the case where G=PSL(2,q).

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2009

References

[1]Aschbacher, M., 3-Transposition Groups, Cambridge Tracts in Mathematics, 124 (Cambridge University Press, Cambridge, 1997).Google Scholar
[2]Bates, C., Bundy, D., Hart, S. and Rowley, P., ‘Commuting involution graphs for sporadic simple groups’, J. Algebra 316 (2007), 849868.CrossRefGoogle Scholar
[3]Bates, C., Bundy, D., Perkins, S. and Rowley, P., ‘Commuting involution graphs in special linear groups’, Comm. Algebra 32 (2004), 41794196.CrossRefGoogle Scholar
[4]Bates, C., Bundy, D., Perkins, S. and Rowley, P., ‘Commuting involution graphs for symmetric groups’, J. Algebra 266 (2003), 133153.CrossRefGoogle Scholar
[5]Blokhuis, A., ‘On subsets of GF(q 2) with square differences’, Indag. Math. 46 (1984), 369372.CrossRefGoogle Scholar
[6]Bosma, W., Cannon, J. and Playoust, C., ‘The magma algebra system I: the user language’, J. Symbolic. Comput. 24(3/4) (1997), 235265 (also see the Magma home page at http://www.maths.usyd.edu.au:8000/u/magma/).CrossRefGoogle Scholar
[7]Broere, I., Döman, D. and Ridley, J. N., ‘The clique numbers and chromatic numbers of certain Paley graphs’, Quaest. Math. 11 (1988), 9193.CrossRefGoogle Scholar
[8]Brouwer, A. E., Cohen, A. M. and Neumaier, A., Distance-regular Graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 18 (Springer, Berlin, 1989).CrossRefGoogle Scholar
[9]Buekenhout, F., La géométrie des groupes de Fischer (Université Libre de Bruxelles, 1972), unpublished notes.Google Scholar
[10]Cuypers, H. and Hall, J. I., ‘The 3-transposition groups with trivial centre’, J. Algebra 178 (1995), 149193.CrossRefGoogle Scholar
[11]Devillers, A., Giudici, M., Li, C. H. and Praeger, C. E., Some graphs related to the small Mathieu groups, submitted.Google Scholar
[12]Dickson, L. E., Linear Groups with an Exposition of the Galois Field Theory (Dover, New York, 1958).Google Scholar
[13]Fischer, B., ‘Finite groups generated by 3-transpositions. I’, Invent. Math. 13 (1971), 232246.CrossRefGoogle Scholar
[14]Fischer, B., ‘Finite groups generated by 3-transpositions’, Lecture Notes, University of Warwick, 1969.Google Scholar
[15]Giudici, M., Li, C. H. and Praeger, C. E., ‘Symmetrical covers, decompositions and factorisations of graphs’, in: Applications to Group Theory and Combinatorics (eds. J. Koolen, J. H. Kwak and M. Xu) (Taylor and Francis, London, 2008), pp. 2742.Google Scholar
[16]Hall, J. I., ‘The general theory of 3-transposition groups’, Math. Proc. Cambridge Philos. Soc. 114 (1993), 269294.Google Scholar
[17]King, O. H., ‘The subgroup structure of finite classical groups in terms of geometric configurations’, in: Surveys in Combinatorics 2005, London Mathematical Society Lecture Note Series, 327 (Cambridge University Press, Cambridge, 2005), pp. 2956.CrossRefGoogle Scholar
[18]Liebeck, M. W., Praeger, C. E. and Saxl, J., ‘A classification of the maximal subgroups of the finite alternating and symmetric groups’, J. Algebra 111 (1987), 365383.CrossRefGoogle Scholar
[19]Liebeck, M. W., Praeger, C. E. and Saxl, J., ‘Primitive permutation groups with a common suborbit, and edge-transitive graphs’, Proc. London Math. Soc. (3) 84 (2002), 405438.CrossRefGoogle Scholar
[20]Lorimer, P., ‘Vertex-transitive graphs: symmetric graphs of prime valency’, J. Graph Theory 8 (1984), 5568.CrossRefGoogle Scholar
[21]Maxwell, G., ‘The normal subgroups of finite and affine Coxeter groups’, Proc. London Math. Soc. (3) 76 (1998), 359382.CrossRefGoogle Scholar