Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T11:10:33.287Z Has data issue: false hasContentIssue false

INTERSECTIONS OF HOLOMORPHIC RETRACTS IN BANACH SPACES

Published online by Cambridge University Press:  04 January 2011

MONIKA BUDZYŃSKA
Affiliation:
Instytut Matematyki UMCS, 20-031 Lublin, Poland (email: [email protected])
SIMEON REICH*
Affiliation:
Department of Mathematics, The Technion—Israel Institute of Technology, 32000 Haifa, Israel (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using the Kobayashi distance, we provide sufficient conditions for the intersection of a family of holomorphic retracts in a Banach space to also be a holomorphic retract.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2010

References

[1]Bruck, R. E., ‘Nonexpansive retracts of Banach spaces’, Bull. Amer. Math. Soc. 76 (1970), 384386.Google Scholar
[2]Bruck, R. E., ‘Properties of fixed point sets of nonexpansive mappings in Banach spaces’, Trans. Amer. Math. Soc. 179 (1973), 251262.Google Scholar
[3]Budzyńska, M. and Kuczumow, T., ‘A strict convexity of the Kobayashi distance’, in: Fixed Point Theory and Applications, Vol. 4 (ed. Cho, Y. J.) (Nova Science Publishers, Hauppauge, NY, 2003), pp. 2733.Google Scholar
[4]Budzyńska, M. and Kuczumow, T., ‘Linear strict convexity of the Kobayashi distance in nonreflexive Banach spaces’, in: Fixed Point Theory and its Applications (eds. Fetter Nathansky, H., Gamboa de Buen, B., Goebel, K., Kirk, W. A. and Sims, B.) (Yokohama Publishers, Yokohama, 2006), pp. 19.Google Scholar
[5]Budzyńska, M., Kuczumow, T. and Stachura, A., ‘Properties of the Kobayashi distance’, in: Proceedings of the Second Conference on Nonlinear Analysis and Convex Analysis (eds. Takahashi, W. and Tanaka, T.) (Yokohama Publishers, Yokohama, 2003), pp. 2536.Google Scholar
[6]Bukhvalov, A. V. and Danilevich, A. A., ‘Boundary properties of analytic and harmonic functions with values in a Banach space’, Mat. Zametki 31 (1982), 203214, English translation: Math. Notes 31 (1982), 104–110.Google Scholar
[7]Davis, W. J. and Enflo, P., ‘Contractive projections on p spaces’, in: Analysis at Urbana (Urbana, IL, 1986–1987), Vol. I, London Mathematical Society Lecture Note Series, 137 (Cambridge University Press, Cambridge, 1989), pp. 151161.Google Scholar
[8]Dineen, S., Timoney, R. M. and Vigué, J.-P., ‘Pseudodistances invariantes sur les domaines d’un espace localement convexe’, Ann. Sc. Norm. Super. Pisa 12 (1985), 515529.Google Scholar
[9]Dunford, N., ‘Uniformity in linear spaces’, Trans. Amer. Math. Soc. 44 (1938), 305356.Google Scholar
[10]Grossetête, C., ‘Classes de Hardy et de Nevanlinna pour les fonctions holomorphes à valeurs vectorielles’, C. R. Acad. Sci. Paris A–B 274 (1972), A251A253.Google Scholar
[11]Harris, L. A., ‘Schwarz–Pick systems of pseudometrics for domains in normed linear spaces’, in: Advances in Holomorphy, North-Holland Mathematics Studies, 34 (North-Holland, Amsterdam–New York, 1979), pp. 345406.Google Scholar
[12]Kapeluszny, J. and Kuczumow, T., ‘A few properties of the Kobayashi distance and their applications’, Topol. Methods Nonlinear Anal. 15 (2000), 169177.CrossRefGoogle Scholar
[13]Kirk, W. A., ‘Nonexpansive retracts and minimal invariant sets’, in: Fixed Point Theory and its Applications (eds. Fetter Nathansky, H., Gamboa de Buen, B., Goebel, K., Kirk, W. A. and Sims, B.) (Yokohama Publishers, Yokohama, 2006), pp. 161169.Google Scholar
[14]Kopecká, E. and Reich, S., ‘Nonexpansive retracts in Banach spaces’, Banach Center Publ. 77 (2007), 161174.Google Scholar
[15]Kuczumow, T., ‘The weak lower semicontinuity of the Kobayashi distance and its application’, Math. Z. 236 (2001), 19.CrossRefGoogle Scholar
[16]Kuczumow, T., Reich, S. and Shoikhet, D., ‘Fixed points of holomorphic mappings: a metric approach’, in: Handbook of Metric Fixed Point Theory (eds. Kirk, W. A. and Sims, B.) (Kluwer Academic Publishers, Dordrecht, 2001), pp. 437515.Google Scholar
[17]Kuczumow, T. and Stachura, A., ‘Iterates of holomorphic and k D-nonexpansive mappings in convex domains in ℂn’, Adv. Math. 81 (1990), 9098.Google Scholar
[18]Lempert, L., ‘Holomorphic retracts and intrinsic metrics in convex domains’, Anal. Math. 8 (1982), 257261.Google Scholar
[19]Mazet, P. and Vigué, J.-P., ‘Points fixes d’une application holomorphe d’un domaine borné dans lui-même’, Acta Math. 166 (1991), 126.Google Scholar
[20]Mazet, P. and Vigué, J.-P., ‘Convexité de la distance de Carathéodory et points fixes d’applications holomorphes’, Bull. Sci. Math. 116 (1992), 285305.Google Scholar
[21]Patrizio, G., ‘Parabolic exhaustions for strictly convex domains’, Manuscripta Math. 47 (1984), 271309.Google Scholar
[22]Reich, S. and Zaslavski, A. J., ‘Attracting mappings in Banach and hyperbolic spaces’, J. Math. Anal. Appl. 253 (2001), 250268.Google Scholar
[23]Ryan, R., ‘Boundary values of analytic vector valued functions’, Indag. Math. 24 (1962), 558572.Google Scholar
[24]Vigué, J.-P., ‘La métrique infinitésimale de Kobayashi et la caractérisation des domaines convexes bornés’, J. Math. Pures Appl. 78 (1999), 867876.CrossRefGoogle Scholar
[25]Vigué, J.-P., ‘Stricte convexité des domaines bornés et unicité des géodésiques complexes’, Bull. Sci. Math. 125 (2001), 297310.Google Scholar