We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
For a normalized analytic function $f(z)=z+\sum _{n=2}^{\infty }a_{n}z^{n}$ in the unit disk $\mathbb{D}:=\{z\in \mathbb{C}:|z|<1\}$, the estimate of the integral means
is an important quantity for certain problems in fluid dynamics, especially when the functions $f(z)$ are nonvanishing in the punctured unit disk $\mathbb{D}\setminus \{0\}$. Let ${\rm\Delta}(r,f)$ denote the area of the image of the subdisk $\mathbb{D}_{r}:=\{z\in \mathbb{C}:|z|<r\}$ under $f$, where $0<r\leq 1$. In this paper, we solve two extremal problems of finding the maximum value of $L_{1}(r,f)$ and ${\rm\Delta}(r,z/f)$ as a function of $r$ when $f$ belongs to the class of $m$-fold symmetric starlike functions of complex order defined by a subordination relation. One of the particular cases of the latter problem includes the solution to a conjecture of Yamashita, which was settled recently by Obradović et al. [‘A proof of Yamashita’s conjecture on area integral’, Comput. Methods Funct. Theory13 (2013), 479–492].
Clunie, J. G., ‘On meromorphic Schlicht functions’, J. Lond. Math. Soc. (2)34 (1959), 215–216.CrossRefGoogle Scholar
[3]
Clunie, J. G. and Keogh, F. R., ‘On starlike and convex Schlicht functions’, J. Lond. Math. Soc. (2)35 (1960), 229–233.CrossRefGoogle Scholar
[4]
Duren, P. L., Univalent Functions, Grundlehren der mathematischen Wissenschaften, 259 (Springer, New York–Berlin–Heidelberg–Tokyo, 1983).Google Scholar
[5]
Golusin, G., ‘On some estimates for functions which map the circle conformally and univalently’, Recueil Math. Moscow36 (1929), 152–172.Google Scholar
[6]
Gromova, L. and Vasil’ev, A., ‘On integral means of star-like functions’, Proc. Indian Acad. Sci. Math. Sci.112(4) (2002), 563–570.CrossRefGoogle Scholar
[7]
Janowski, W., ‘Some extremal problems for certain families of analytic functions’, Ann. Polon. Math.28 (1973), 297–326.CrossRefGoogle Scholar
[8]
Libera, R. J., ‘Univalent 𝛼-spiral functions’, Canad. J. Math.19 (1967), 449–456.CrossRefGoogle Scholar
[9]
Littlewood, J. E., ‘On inequalities in the theory of functions’, Proc. London Math. Soc. (3)23 (1925), 481–519.CrossRefGoogle Scholar
[10]
Miller, S. S. and Mocanu, P. T., Differential Subordinations: Theory and Applications, Monographs and Textbooks in Pure and Applied Mathematics, 225 (Marcel Dekker, New York, 2000).CrossRefGoogle Scholar
[11]
Nasr, M. A. and Aouf, M. K., ‘Radius of convexity for the class of starlike functions of complex order’, Bull. Fac. Sci. Assiut Univ. A12(1) (1983), 153–159.Google Scholar
[12]
Nevanlinna, R., ‘Über die konforme Abbildung von Sterngebieten’, Öfvers. Finska Vetensk. Soc. F̈orh.63A (1921), 1–21.Google Scholar
[13]
Noshiro, K., ‘On the theory of Schlicht functions’, J. Fac. Sci. Hokkaido Univ. I2 (1934), 129–155.Google Scholar
[14]
Obradović, M., Ponnusamy, S. and Wirths, K.-J., ‘A proof of Yamashita’s conjecture on area integral’, Comput. Methods Funct. Theory13 (2013), 479–492.CrossRefGoogle Scholar
[15]
Obradović, M., Ponnusamy, S. and Wirths, K.-J., ‘Integral means and Dirichlet integral for analytic functions’, Math. Nachr.288 (2015), 334–342.CrossRefGoogle Scholar
[16]
Padmanabhan, K. S., ‘On certain classes of starlike functions in the unit disk’, J. Indian Math. Soc.32 (1968), 89–103.Google Scholar
[17]
Ponnusamy, S., Sahoo, S. K. and Sharma, N. L., ‘Maximal area integral problem for certain class of univalent analytic functions’, Mediterr. J. Math., to appear. Published online 12 February 2015.CrossRefGoogle Scholar
[18]
Ponnusamy, S. and Wirths, K.-J., ‘On the problem of Gromova and Vasil’ev on integral means, and Yamashita’s conjecture for spirallike functions’, Ann. Acad. Sci. Fenn. AI39 (2014), 721–731.Google Scholar
[19]
Robertson, M. S., ‘On the theory of univalent functions’, Ann. of Math. (2)37 (1936), 374–408.CrossRefGoogle Scholar
[20]
Robertson, M. S., ‘Quasi-subordination and coefficient conjectures’, Bull. Amer. Math. Soc. (N.S.)76 (1970), 1–9.CrossRefGoogle Scholar
[21]
Sahoo, S. K. and Sharma, N. L., ‘On maximal area integral problem for analytic functions in the starlike family’, J. Class. Anal.6 (2015), 73–84.CrossRefGoogle Scholar
Singh, R., ‘On a class of starlike functions’, J. Indian Math. Soc.32 (1968), 208–213.Google Scholar
[24]
Singh, R. and Singh, V., ‘On a class of bounded starlike functions’, Indian J. Pure Appl. Math.5 (1974), 733–754.Google Scholar
[25]
Špaček, L., ‘Contribution à la théorie des fonctions univalentes’, Časopis Pěst. Mat. Fys.62 (1933), 12–19.CrossRefGoogle Scholar
[26]
Vasil’ev, A., ‘Univalent functions in two-dimensional free boundary problems’, Acta Appl. Math.79(3) (2003), 249–280.CrossRefGoogle Scholar
[27]
Vasil’ev, A. and Markina, I., ‘On the geometry of Hele-Shaw flows with small surface tension’, Interfaces Free Bound.5(2) (2003), 183–192.CrossRefGoogle Scholar
[28]
Yamashita, S., ‘Area and length maxima for univalent functions’, Bull. Aust. Math. Soc.41 (1990), 435–439.CrossRefGoogle Scholar
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Srivastava, H. M.
Prajapati, A.
and
Gochhayat, P.
2022.
Integral means and Yamashita’s conjecture associated with the Janowski type (j, k)-symmetric starlike functions.
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas,
Vol. 116,
Issue. 4,