Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-23T05:55:43.274Z Has data issue: false hasContentIssue false

Integral formulas with weight factors

Published online by Cambridge University Press:  09 April 2009

Telemachos Hatziafratis
Affiliation:
University of Athens15784 Athens, Greece
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A Bochner-Martinelli-Koppelman type integral formula with weight factors is derived on complete intersection submanifolds of domains of Cn.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1992

References

[1]Aizenberg, I. and Yuzhakov, A., Integral representations and residues in multidimensional complex analysis., Trans. Math. Monographs 58, Amer. Math. Soc., Providence, R. I., 1983.CrossRefGoogle Scholar
[2]Andersson, M. and Berndtsson, B., Henkin-Ramirez formulas with weight factors, Ann. Inst. Fourier Grenoble 32 (3) (1982), 91–110.CrossRefGoogle Scholar
[3]Berndtsson, B., A formula for interpolation and division in Cn, Math. Ann. 263 (1983), 399418.Google Scholar
[4]Berndtsson, B., Integral formulas on projective space and the Radon transform of Gindikin-Henkin-Polyakov, Pub. Mat. 32 (1988), 741.Google Scholar
[5]Charpentier, P., Solutions minimales de l'equation u = f dans la boule et dans le polydisque, Ann. Inst. Fourier 30 (4) (1980), 121153.CrossRefGoogle Scholar
[6]Dautov, S. V. and Henkin, G. M., Zeros of holomorphic functions of finite order and weighted estimates for solutions of the -equation, Math. USSR–Sb. 107 (1979), 163174.Google Scholar
[7]Hatziafratis, T., Integral representation formulas on analytic varities, Pacific J. Math. 123 (1986), 7191.Google Scholar
[8]Hatziafratis, T., An explicit Koppleman type integral formula on analytic varieties, Michigan Math. J. 3 (1986) 335341.Google Scholar
[9]Henkin, G. M. and Leiterer, J., Theory of functions on complex manifolds, (Birkhäuser, 1984).Google Scholar
[10]Henkin, G. M. and Leiterer, J., Andreotti-Grauert theory by integral formulas, (Birkhäuser, 1988).Google Scholar
[11]Hörmander, L., An introduction to complex analysis in several variables, (North-Holland, k1973).Google Scholar
[12]Ovrelid, N., Integral representation formulas and Lp-estimates for the -equation, Math. Scand. 29 (1971), 137160.CrossRefGoogle Scholar
[13]Range, R. M., Holomorphic functions and integral representations in several complex variables, (Springer Verlag, 1986).CrossRefGoogle Scholar
[14]Skoda, H., (Valerus au bord pour les solutions se l'opérateur d”et caractérisation des zéros des fonctions de la classe de Nevanhinna), Bull. Soc. Math. France 104 (1976), 225299.CrossRefGoogle Scholar