Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T13:28:29.357Z Has data issue: false hasContentIssue false

Hypergroups associated to harmonic NA groups

Published online by Cambridge University Press:  09 April 2009

Bianca Di Blasio
Affiliation:
Dipartimento di Matematica, Università degli studi di Roma ‘Tor Vergata’, via della Ricerca scientifica 1, 00133 Roma, Italy e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A harmonic NA group is a suitable solvable extension of a two-step nilpotent Lie group N of Heisenberg type by R+, which acts on N by anisotropic dilations. A hypergroup is a locally compact space for which the space of Borel measures has a convolution structure preserving the probability measures and satisfying suitable conditions. We describe a class of hypergroups associated to NA groups.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2002

References

[1]Anker, J.-Ph., Damek, E. and Yacoub, C., ‘Spherical analysis on harmonic AN groups’, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), 643679.Google Scholar
[2]Astengo, F., ‘A class of Lp convolutors on harmonic extensions of H-type groups’, J. Lie Theory 5 (1995), 147164.Google Scholar
[3]Blasio, B. Di, Analisi di Fourier sferica su estensioni risolubili di gruppi di Heisenberg generalizzati (Ph.D. Thesis, Politecnico di Torino, 1997).Google Scholar
[4]Blasio, B. Di, ‘An extension of the theory of Gelfand pairs to radial functions on Lie groups’, Boll. Un. Mat. Ital. B (7) 11 (1997), 623642.Google Scholar
[5]Cowling, M., Dooley, A. H., Korányi, A. and Ricci, F., ‘H-type groups and Iwasawa decompositions’, Adv. Math. 87 (1991), 141.CrossRefGoogle Scholar
[6]Damek, E., ‘The geometry of a semidirect extension of a Heisenberg type nilpotent group’, Colloq. Math. 53 (1987), 255268.CrossRefGoogle Scholar
[7]Damek, E. and Ricci, F., ‘Harmonic analysis on solvable extensions of H-type groups’, J. Geom. Anal. 2 (1992), 213248.CrossRefGoogle Scholar
[8]Erdelyi, A., Magnus, W., Oberhettinger, F. and Tricomi, G., Higher transcendental functions, Vol. I (McGraw-Hill, New York, 1953).Google Scholar
[9]Flensted-Jensen, M. and Koornwinder, T., ‘The convolution structure for Jacobi function expansions’, Ark. Mat. 11 (1973), 245262.CrossRefGoogle Scholar
[10]Ricci, F., ‘The spherical transform on harmonic extensions of H-type groups’, Rend. Sem. Mat. Univ. Politec. Torino 50 (1992), 381392.Google Scholar
[11]Spector, R., ‘Aperçu de la théorie des hypergroupes’, in: Analyse harmonique sur les groupes de Lie (Sém. Nancy-Strasbourg, 1973–75) Lecture Notes in Math. 497 (Springer, Berlin, 1975) pp. 643673.Google Scholar
[12]Wildberger, N. J., ‘Hypergroups, symmetric spaces, and wrapping maps’, in: Probability measures on groups and related structures, XI, (Oberwolfach, 1994) (World Sci. Publishing, River Edge, NJ, 1995) pp. 406425.Google Scholar