Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T23:47:33.587Z Has data issue: false hasContentIssue false

HYPERCOMMUTING VALUES IN ASSOCIATIVE RINGS WITH UNITY

Published online by Cambridge University Press:  08 March 2013

VINCENZO DE FILIPPIS*
Affiliation:
DiSIA, Department of Mathematics and Computer Science, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy
GIOVANNI SCUDO
Affiliation:
Department of Mathematics and Computer Science, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $K$ be a commutative ring with unity, $R$ an associative $K$-algebra of characteristic different from $2$ with unity element and no nonzero nil right ideal, and $f({x}_{1} , \ldots , {x}_{n} )$ a multilinear polynomial over $K$. Assume that, for all $x\in R$ and for all ${r}_{1} , \ldots , {r}_{n} \in R$ there exist integers $m= m(x, {r}_{1} , \ldots , {r}_{n} )\geq 1$ and $k= k(x, {r}_{1} , \ldots , {r}_{n} )\geq 1$ such that $\mathop{[{x}^{m} , f({r}_{1} , \ldots , {r}_{n} )] }\nolimits_{k} = 0$. We prove that: (1) if $\text{char} (R)= 0$ then $f({x}_{1} , \ldots , {x}_{n} )$ is central-valued on $R$; and (2) if $\text{char} (R)= p\gt 2$ and $f({x}_{1} , \ldots , {x}_{n} )$ is not a polynomial identity in $p\times p$ matrices of characteristic $p$, then $R$ satisfies ${s}_{n+ 2} ({x}_{1} , \ldots , {x}_{n+ 2} )$ and for any ${r}_{1} , \ldots , {r}_{n} \in R$ there exists $t= t({r}_{1} , \ldots , {r}_{n} )\geq 1$ such that ${f}^{{p}^{t} } ({r}_{1} , \ldots , {r}_{n} )\in Z(R)$, the center of $R$.

Type
Research Article
Copyright
Copyright ©2013 Australian Mathematical Publishing Association Inc. 

References

Bergen, J., ‘Multilinear polynomials with power commuting values’, Houston J. Math. 11 (3) (1985), 283292.Google Scholar
Chacron, M., Lawrence, J. and Madison, D., ‘A note on radical extensions of rings’, Canad. Math. Bull. 18 (3) (1975), 423425.CrossRefGoogle Scholar
Chuang, C. L. and Lee, T. K., ‘Rings with annihilator conditions on multilinear polynomials’, Chinese J. Math. 24 (2) (1996), 177185.Google Scholar
Chuang, C. L. and Lee, T. K., ‘Density of polynomial maps’, Canad. Math. Bull. 53 (2) (2010), 223229.CrossRefGoogle Scholar
Chuang, C. L. and Lin, J. S., ‘On a conjecture by Herstein’, J. Algebra 126 (1989), 119138.CrossRefGoogle Scholar
De Filippis, V. and Di Vincenzo, O. M., ‘An Engel condition with derivation for multilinear polynomials in prime rings’, Algebra Coll. 9 (4) (2002), 361374.Google Scholar
Di Vincenzo, O. M. and Valenti, A., ‘On $n\mathrm{th} $ commutators with nilpotent or regular values in rings’, Rend. Circ. Mat. Palermo SERIE II TOMO XL (1991), 453464.CrossRefGoogle Scholar
Herstein, I. N., Procesi, C. and Schacher, M., ‘Algebraic valued functions on noncommutative rings’, J. Algebra 36 (1975), 128150.CrossRefGoogle Scholar
Rowen, L. M., ‘General polynomial identities II’, J. Algebra 38 (1976), 380392.CrossRefGoogle Scholar