Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-23T05:05:34.808Z Has data issue: false hasContentIssue false

The hulls of representable l-groups and f-rings

Published online by Cambridge University Press:  09 April 2009

Paul Conrad
Affiliation:
Department of MathematicsUniversity of KansasLawrence, Kansas 66044, U.S.A.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A lattice-ordered group (“l-group”) G will be called

a P-group if G = g″ ⊕ g′ for each gG (projectable)

an SP-group if G = CC′ for each polar C of G (strongly projectable)

an L-group if each disjoint subset has a 1. u. b. (laterally complete)

an O group if it is both an L-group and a P-group (orthocomplete).

G is representable if it is an l-subgroup of a cardinal product of totally ordered groups. It follows that a P-group must be representable and hence SP-groups and O-groups are also representable.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1973

References

[1]Amemiya, I., ‘A general spectral theory in semi-ordered linear spaces’, J. Fac. Sci. Hokkaido Univ. 12 (1953), 111156.Google Scholar
[2]Bernau, S., ‘Unique representations of lattice groups and normal Archimedean lattice rings’, Proc. London Math. Soc. 15 (1965), 599631.CrossRefGoogle Scholar
[3]Bernau, S., ‘Orthocompletions of lattice groups’, Proc. London Math. Soc. 16 (1966), 107130.CrossRefGoogle Scholar
[4]Bigard, A., ‘Contribution à la théorie des groups reticules, (Thèse Univ. Paris (1969)).Google Scholar
[5]Birkhoff, G. and Pierce, T., ‘Lattice ordered rings’, An. Acad. Brasil. Ci 28 (1956), 4169.Google Scholar
[6]Bleier, R., Free vector lattices, (Dissertation Tulane University (1971)).Google Scholar
[7]Chambless, D., The representation and structure of lattice-ordered groups and f-rings, (Dissertation Tulane University (1971)).Google Scholar
[8]Chambless, D., ‘Representation of l-groups by almost-finite quotient maps’, Proc. Amer. Math. Soc. 28 (1971), 5962.Google Scholar
[9]Conrad, P., ‘The lateral completion of a lattice-ordered group’, Proc. London Math. Soc. 19 (1969), 444486.CrossRefGoogle Scholar
[10]Conrad, P., ‘The essential closure of an archimedean lattice-ordered group’, Duke Math. J. 38 (1971) 151160.CrossRefGoogle Scholar
[11]Conrad, P., ‘Minimal vector lattice covers’, Bull. Australian Math. Soc. 5 (1971), 3539.CrossRefGoogle Scholar
[12]Conrad, P. and McAlister, D., ‘The completion of a lattice ordered group’, J. Australian Math. Soc. 9 (1962), 182208.CrossRefGoogle Scholar
[13]Cornad, P., and Diem, J., ‘The ring of polar preserving endomorphisms of an l-group’, Illinois J. Math. 15 (1971), 222240.Google Scholar
[14]Fuchs, L., Partially ordered algebraic systems, (Pergamon Press, Oxford, London, New York, Paris) (1963).Google Scholar
[15]Henriksen, M. and Isbell, J., ‘Lattice-ordered rings and function rings’, Pacific J. Math. 12 (1962), 533565.CrossRefGoogle Scholar
[16]Jakubik, J., ‘Representations and extensions of l-groups’, Czech. Math. J. 13 (1963), 267283.CrossRefGoogle Scholar
[17]Johnson, D., ‘A structure theory for a class of lattice-ordered rings’, Acta Math. 104 (1960), 163215.CrossRefGoogle Scholar
[18]Nakano, H., Modern spectral theory, Tokyo Math. Book Series II, (Maruzen Tokyo) (1950).Google Scholar
[19]Pinsker, A., ‘Extended semiordered groups and spaces’, Uchen. Zapiski Leningrad Gos. Ped. Inst. 86 (1949), 236265.Google Scholar
[20]Sik, F., ‘Zur Theorie der halbgeordneten Gruppen’, Czech. Math. J. 6 (1956), 125.Google Scholar
[21]Speed, T., ‘On lattice ordered groups’, (preprint).Google Scholar
[22]Steinberg, S., Lattice-ordered rings and modules, (Thesis University Illinois (1970)).Google Scholar
[23]Vecksler, A., ‘Structural orderability of algebras and rings’, Soviet Math. Dokl. 6 (1965), 12011204.Google Scholar
[24]Vecksler, A., ‘On the partial orderability of rings and algebras’, Soviet Math. Dokl. 11 (1970), 175179.Google Scholar
[25]Vulich, B., Introduction to the theory of partially ordered spaces, (Wolters-Noordhoff, Groningen 1967).Google Scholar