Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-22T23:25:31.175Z Has data issue: false hasContentIssue false

Hermite-Birkhoff trigonometric interpolation in the (0, 1, 2, M) case

Published online by Cambridge University Press:  09 April 2009

A. K. Varma
Affiliation:
Department of Mathematics University of Florida Gainesville, Florida, 32601, U.S.A.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Following four important papers on Birkhoff interpolation by Turán and his associates ([2], [3], [4], [14]), Kis ([8], [19]) proved the following theorems.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1973

References

[1]Birkhoff, G. D., ‘General mean value and remainder theorems with applications to mechanical differentiation and integration’. Trans. Amer. Math. Soc. 7 (1906), 107136.CrossRefGoogle Scholar
[2]Baláza, J. and Turán, P., ‘Notes on interpolation’, II. Acta Math. Acad. Sci. Hung. 8 (1957), 201215.CrossRefGoogle Scholar
[3]Balázs, J. and Turán, P., ‘Notes on interpolation III Convergence’, Acta Math. Acad. Sci. Hung. 9 (1958), 195214.CrossRefGoogle Scholar
[4]Balázs, J. and Turán, P., ‘Notes on interpolation IV (Inequalities),’ Acta Math. Acad. Sci. Hung. 9 (1958), 243258.CrossRefGoogle Scholar
[5]Jackson, D., ‘Theory of approximation’, AMS Vol. 11.Google Scholar
[6]Erdös, P. and Turán, P., ‘On some extremal problems in the theory of interpolation’, Acta Math. Acad. Sci. Hung. 12 (1961), 221239.CrossRefGoogle Scholar
[7]Fejer, L., ‘Die Abschätzung eines Polynoms in einem Intervalle, wenn Schranken für seine Werte und ersten Ableitung-swerte in einzelnen Punkten des Intervalles’… Math. Z. 39 (1930), 426457.CrossRefGoogle Scholar
[8]Kis, O., ‘Remarks on interpolation’, Acta Math. Acad. Sci. Hung. II (1960), 4964. (Russian)Google Scholar
[9]Pölya, G., ‘Bemerkungen zur Interpolation und zur Näherungtheorie der Balkenbiegung,’ Zeitschr. fur Ang. Math. und Mech. II (1931), 445449.CrossRefGoogle Scholar
[10]Schoenberg, I. J., ‘On Hermite Birkhoff interpolation’, J. Math. Analysis and its Application 16 (1966), 538592.CrossRefGoogle Scholar
[11]Sharma, A. and Varma, A. K., ‘Trigonometric interpolation (O, M) case,’ Duke Math. J. 32 (1965), 341358.CrossRefGoogle Scholar
[12]Sharma, A. and Varma, A. K., ‘Trigonometric interpolation (0, 2, 3) case,’ Ann. Polonici, Math. 21 (1968), 5158.CrossRefGoogle Scholar
[13]Shisha, O. and Mond, B., ‘The degree of approximation to periodic functions by linear positive operators,’ J. of Approximation Theory 1 (1969), 335339.CrossRefGoogle Scholar
[14]Suranyi, J. and Turán, P., ‘Notes on Interpolation IActa Math. Acad. Sci. Hung. (1955), 6779.Google Scholar
[15]Varma, A. K., ‘Trigonometric Interpolation’, Jour. Math. Analysis and its Application, 28 (1969), 652659.CrossRefGoogle Scholar
[16]Varma, A. K., ‘An analogue of a problem of J. Balázs and P. Turán III,’ Trans. of the American Math. Society, 146 (1969), 107120.Google Scholar
[17]Varma, A. K., ‘Some remarks on trigonometric interpolation,’ Israel J. Math. 7 (1969), 117185.CrossRefGoogle Scholar
[18]Varma, A. K., ‘On a new interpolation process,’ Jour. Approx. Theory, 4 (2) (1971), 159164.CrossRefGoogle Scholar
[19]Varma, A. K., ‘Some remarks on a theorem of S. M. Lozinski converning linear process of approximation of periodic functions’, Studia Math. (to appear).Google Scholar
[20]Vertesi, P., ‘On the divergence of the sequence of linear operators’, Acts Math. Acad. Sci. Hungar, 20 (1969), 299408.Google Scholar
[21]Zygmund, A., Trigonometric Series Vol. II (Cambridge University Press, 1959).Google Scholar