Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-22T23:17:22.120Z Has data issue: false hasContentIssue false

Harmonic maps and cosymplectic manifolds

Published online by Cambridge University Press:  09 April 2009

E. Boeckx
Affiliation:
Katholieke Universiteit Leuven, Department of Mathematics Celestijnenlaan, 200B 3001 Leuven, Belgium e-mail: [email protected]
C. Gherghe
Affiliation:
University of Bucharest, Faculty of Mathematics Str. Academiei 14 70109 Bucharest, Romania, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the harmonicity of maps to or from cosymplectic manifolds by relating them to maps to or from Kähler spaces.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2004

References

[1]Blair, D. E., Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509 (Springer, Berlin, 1976).CrossRefGoogle Scholar
[2]Capursi, M., ‘Some remarks on the product of two almost contact manifolds’, An. Şiinţ. Univ. Al. I. Cuza Iaşi Secţ. I a Mat. 30 (1984), 7579.Google Scholar
[3]Eells, J. and Lemaire, L., ‘A report on harmonic maps’, Bull. London Math. Soc. 10 (1978), 168.CrossRefGoogle Scholar
[4]Eells, J. and Lemaire, L., Selected topics in harmonic maps, CBMS Regional Conference Series in Mathematics 50 (American Mathematical Society, Providence, 1983).CrossRefGoogle Scholar
[5]Eells, J. and Lemaire, L., ‘Another report on harmonic maps’, Bull. London Math. Soc. 20 (1988), 385524.CrossRefGoogle Scholar
[6]Eells, J. and Sampson, J. H., ‘Harmonic mappings of Riemannian manifolds’, Amer. J. Math. 86 (1964), 109160.CrossRefGoogle Scholar
[7]Fuglede, B., ‘Harmonic morphisms between Riemannian manifolds’, Ann. Inst. Fourier (Grenoble) 28 (1978), 107144.CrossRefGoogle Scholar
[8]Gherghe, C., Ianus, S. and Pastore, A. M., ‘CR-manifolds, harmonic maps and stability’, J. Geom. 71 (2001), 4253.CrossRefGoogle Scholar
[9]Gray, A. and Hervella, L. M., ‘The sixteen classes of almost Hermitian manifolds and their linear invariants’, Ann. Mat. Pura Appl. 123 (1980), 3558.CrossRefGoogle Scholar
[10]Ianus, S. and Pastore, A. M., ‘Harmonic maps on contact metric manifolds’, Ann. Math. Blaise Pascal 2 (1995), 4355.CrossRefGoogle Scholar
[11]Ishihara, T., ‘A mapping of Riemannian manifolds which preserves harmonic functions’, J. Math. Kyoto Univ. 19 (1979), 215229.Google Scholar
[12]Loubeau, E., ‘Pluriharmonic morphisms between complex manifolds’, in: Differential geometry and applications (Brno, 1998) (Masaryk Univ., Brno, 1999) pp. 8997.Google Scholar
[13]Mazet, E., ‘La formule de la variation seconde de l'énergie au voisinage d'une application harmonique’, J. Differential Geom. 9 (1974), 531535.Google Scholar
[14]Morimoto, A., ‘On normal almost contact structures’, J. Math. Soc. Japan 15 (1963), 420436.CrossRefGoogle Scholar
[15]Ohnita, Y. and Udagawa, S., ‘Complex-analyticity of pluriharmonic maps and their constructions’, in: Prospects in complex geometry (Katata and Kyoto, 1989), Lecture Notes in Math. 1468 (Springer, Berlin, 1991) pp. 371407.CrossRefGoogle Scholar
[16]Oubiña, A., ‘New classes of almost contact metric structures’, Publ. Math. Debrecen 32 (1985), 187193.CrossRefGoogle Scholar
[17]Siu, Y.-T., ‘The complex analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds’, Ann. of Math. 112 (1980), 73111.CrossRefGoogle Scholar
[18]Smith, R., ‘The second variation formula for harmonic mapping’, Proc. Amer. Math. Soc. 47 (1975), 229236.CrossRefGoogle Scholar
[19]Tricerri, F. and Vanhecke, L., ‘Curvature tensors on almost Hermitian manifolds’, Trans. Amer. Math. Soc. 267 (1981), 365398.CrossRefGoogle Scholar
[20]Udagawa, S., ‘Pluriharmonic maps and minimal immersions of Kähler manifolds’, J. London Math. Soc. 37 (1988), 375384.CrossRefGoogle Scholar
[21]Urakawa, H., Calculus of variations and harmonic maps, Transl. Math. Monographs 132 (American Mathematical Society, Providence, 1993).Google Scholar
[22]Watson, B., ‘New examples of strictly almost Kählermanifolds’, Proc. Amer. Math. Soc. 88 (1983), 541544.Google Scholar
[23]Yau, S. T., ‘A general Schwarz lemma for Kähler manifolds’, Amer. J. Math. 100 (1978), 197203.CrossRefGoogle Scholar