Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T13:31:35.865Z Has data issue: false hasContentIssue false

The growth of the expected number of real zeros of a random polynomial

Published online by Cambridge University Press:  09 April 2009

Richard Glendinning
Affiliation:
Department of Civil EngineeringUniversity of Newcastle upon TyneNewcastle upon Tyne NE1 7RU, England
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let X0, X1…Xn,… be a stationary Gaussian process. We give sufficient conditions for the expected number of real zeros of the polynomial Qn (z) = Σnj =o X jzj to be (2/ π)log n as n tends to infinity.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1989

References

Bharucha-Reid, A. T. and Sambandham, M. (1986), Random polynomials, (Academic Press, Inc.).Google Scholar
Dunnage, J. E. A. (1966), ‘The number of real zeros of a random trigonometric polynomial’, Proc. London Math. Soc. 3, 5384.CrossRefGoogle Scholar
Hamblen, J. W. (1956), ‘Distribution of the roots of quadratic equations with random coefficients’, Ann. Math. Statist. 27, 11361143.CrossRefGoogle Scholar
Ibragimov, I. A. (1962), ‘Some limit theorems for stationary processes’, Theor. Probab. Appl. 7, 349382.CrossRefGoogle Scholar
Ibragimov, I. A. and Naslova, N. B. (1971a), ‘On the expected number of real zeros of random polynomials (I). Coefficients with zero means’, Theor. Probab. Appl. 16, 228248.CrossRefGoogle Scholar
Ibragimov, I. A. and Maslova, N. B. (1971b), ‘On the expected number of real zeros of random polynomials (II). Coefficients with nonzero means’, Theor. Probab. Appl. 17, 485493.CrossRefGoogle Scholar
Kac, M. (1948), ‘On the average number of real roots of a random algebraic equation (II)’, Proc. London Math. Soc. 50, 390408.CrossRefGoogle Scholar
Renganathan, N. and Sambandham, M. (1984), ‘On the average number of real zeros of a random trigonometric polynomial with dependent coefficients—(II)’, Indian J. Pure Appl. Math. 15(9), 19511956.Google Scholar
Sambandham, M. (1976a), ‘Real zeros of a random polynomial with hyperbolic elements’, Indian J. Pure Appl. Math. 7 (5), 553556.Google Scholar
Sambandham, M. (1976b), ‘On random trigonometric polynomials’, Indian J. Pure Appl. Math. 7(8), 841849.Google Scholar
Sambandham, M. (1977), ‘On a random algebraic equation’, J. Indian Math. Soc. (N.S.) 41 (1–2) 8397.Google Scholar
Sambandham, M. (1979), ‘On the average number of real zeros of a class of random algebraic curves’, Pacific J. Math. 81, 207215.CrossRefGoogle Scholar
Sambandham, M. and Maruthnachalam, C. (1978), ‘On the number of real zeros of a random trigonometric polynomial’, J. Indian Math. Soc. (N.S) 42, (1–4), 143156.Google Scholar
Shenker, M. (1981), ‘The mean number of real roots for one class of random polynomials’, Ann. Probab. 9(3), 510512.CrossRefGoogle Scholar
Stevens, D. C. (1969), ‘The average number of real zeros of a random polynomial’, Comm. Pure Appl. Math. 22, 457477.CrossRefGoogle Scholar
Titchmarsh, E. C. (1939), The theory of functions second edition (Oxford University Press).Google Scholar
Yoshihara, Ken-Ichi (1978), ‘Moment inequalities for mixing sequences’, Kodai Math. J. 1 (2), 316318.CrossRefGoogle Scholar
Zygmund, A. (1959), Trigonometric series, Vol. 1 (Oxford University Press).Google Scholar