Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-04T21:46:45.639Z Has data issue: false hasContentIssue false

GORENSTEIN PROJECTIVE, INJECTIVE AND FLAT MODULES

Published online by Cambridge University Press:  15 December 2009

ZHONGKUI LIU
Affiliation:
Department of Mathematics, Northwest Normal University, Lanzhou 730070, PR China (email: [email protected])
XIAOYAN YANG*
Affiliation:
Department of Mathematics, Northwest Normal University, Lanzhou 730070, PR China (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In basic homological algebra, projective, injective and flat modules play an important and fundamental role. In this paper, we discuss some properties of Gorenstein projective, injective and flat modules and study some connections between Gorenstein injective and Gorenstein flat modules. We also investigate some connections between Gorenstein projective, injective and flat modules under change of rings.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association, Inc. 2009

Footnotes

Research supported by National Natural Science Foundation of China, TRAPOYT and the Cultivation Fund of Key Scientific and Technical Innovation Project, Ministry of Education of China.

References

[1]Anderson, F. W. and Fuller, K. R., Rings and Categories of Modules (Springer, Berlin, 1992).CrossRefGoogle Scholar
[2]Auslander, M. and Bridger, M., ‘Stable module theory’, Mem. Amer. Math. Soc. 94 (1969).Google Scholar
[3]Christensen, L. W., Gorenstein Dimensions (Springer, Berlin, 2000).CrossRefGoogle Scholar
[4]Christensen, L. W., Frankild, A. and Holm, H., ‘On Gorenstein projective, injective and flat dimensions—a functorial description with applications’, J. Algebra 302 (2006), 231279.CrossRefGoogle Scholar
[5]Ding, N. Q. and Chen, J. L., ‘Coherent ring with finite self-FP-injective dimension’, Comm. Algebra 24 (1996), 29632980.CrossRefGoogle Scholar
[6]Enochs, E. E. and Jenda, O. M. G., ‘Gorenstein injective and projective modules’, Math. Z. 220 (1995), 611633.CrossRefGoogle Scholar
[7]Enochs, E. E. and Jenda, O. M. G., Relative Homological Algebra (Walter de Gruyter, Berlin, 2000).CrossRefGoogle Scholar
[8]Enochs, E. E. and López-Ramos, J. A., ‘Kaplansky classes’, Rend. Sem. Math. Univ. Padova 107 (2002), 6779.Google Scholar
[9]Holm, H., ‘Gorenstein homological dimensions’, J. Pure Appl. Algebra 189 (2004), 167193.CrossRefGoogle Scholar
[10]Kasch, F., Modules and Rings (Academic Press, London, 1981).Google Scholar
[11]Lam, T. Y., Lecture on Modules and Rings (Springer, Berlin, 1999).CrossRefGoogle Scholar
[12]Mao, L. X. and Ding, N. Q., ‘Cotorsion modules and relative pure-injectivity’, J. Aust. Math. Soc. 81 (2006), 225243.CrossRefGoogle Scholar
[13]Osborne, M. S., Basic Homological Algebra (Springer, Berlin, 2000).CrossRefGoogle Scholar
[14]Rotman, J. J., An Introductions to Homological Algebra (Academic Press, New York, 1979).Google Scholar
[15]Trlifaj, J., ‘Ext and inverse limits’, Illinois J. Math. 47 (2003), 529538.CrossRefGoogle Scholar
[16]Xu, J., Flat Covers of Modules, Lecture Notes in Mathematics, 1634 (Springer, Berlin, 1996).CrossRefGoogle Scholar
[17]Yang, X. Y. and Liu, Z. K., ‘Ω-Gorenstein projective, injective and flat modules’, Algebra Colloq., to appear.Google Scholar