Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T03:27:41.108Z Has data issue: false hasContentIssue false

George Szekeres

Published online by Cambridge University Press:  09 April 2009

J. R. Giles
Affiliation:
University of Newcastle and Institute of Advanced Studies, Australian National University, Canberra.
Jennifer Seberry Wallis
Affiliation:
University of Newcastle and Institute of Advanced Studies, Australian National University, Canberra.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

George Szekeres was born in Budapest on 29th May, 1911 the second of three sons to wealthy Jewish parents. As a youth he was shy and retiring, but early it become clear that his gifts lay in the direction of science and mathematics. At high school George was greatly influenced by his teacher in mathematics and physics, K. (Charles) Novobátzky, who worked actively in the theory of relativity and was in 1945 to become a professor of theoretical physics at the University of Budapest. Small wonder that George's first great mathematical interest was relativity. The other major formative influence at high school was the journal ‘Koözeépiskolai Matematikai és Fizikai Lapok’. The names of problem solver were published with each solution and with the completion of the year's volume, photographs of the main contributors were reproduced.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1976

References

Publications

Über das zweite Hauptproblem der “Factorisatio Numerorum” (with Tur´n, P.). Acta Szeged. 6 (1933), 143154; (Zbl. 7, 299).Google Scholar
Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem’ (with Erdös, P.), Acta Szeged. 7 (1934), 95102; (Zbl. 10, 294).Google Scholar
A combinatorial problem in geometry’ (with Erdös, P.), Compositio Math. 2 (1935), 463470; (Zbl. 12, 270).Google Scholar
Note on lattice points within a parallelepiped’, J. London Math. Soc. 12 (1937), 3639; (Zbl. 15, 391).Google Scholar
On a problem of the lattice-plane’, J. London Math. Soc. 12 (1937), 8893; (Zbl. 16, 368).Google Scholar
Egy szélsöérték feladat a determinánselméletben’ (with Turán, P.), Math. -nat. Anz. Ungar. Akad. Wiss. 56 (1937), 796806; (Zbl. 18, 387).Google Scholar
Ein Problem über mehrere ebene Bereiche’, Acta Szeged. 9 (1940), 247252; (Zbl. 22, 267).Google Scholar
On an extremum problem in the plane’, Amer. J. Math. 63 (1941), 208210; (Zbl. 24, 132).CrossRefGoogle Scholar
On a certain class of metabelian groups’, Ann. of Math. (2) 49 (1948), 4352; (MR 9, 492).CrossRefGoogle Scholar
Countable Abelian groups without torsion’, Duke Math. J. 15 (1948), 293306; (MR 9, 492).Google Scholar
Determination of a certain family of finite metabelian groups’, Trans. Amer. Math. Soc. 66 (1949), 143; (MR 11, 320).CrossRefGoogle Scholar
The asymptotic behaviour of the coefficients of certain power series’, Acta Szeged. 12 (1950), 187198; (MR 13, 220).Google Scholar
New formulation of the general theory of relativity’, Physical Rev. (2) 97 (1955), 212223; (MR 16, 869).CrossRefGoogle Scholar
A note on the volume of the unitary symmetrical space’, J. Indian Math. Soc. (NS) 19 (1955), 127132; (MR 18, 121).Google Scholar
On some exponential and polar representations of matrices’ (with de, Bruijn N.G.), Nieuw Arch. Wisk. (3) 3 (1955), 2032; (MR 16, 785).Google Scholar
On a property of monotone and convex functions’, Proc. Amer. Math. Soc. 7 (1956), 351353; (MR 18, 23).CrossRefGoogle Scholar
An asymptotic formula in the theory of partitions’, Quart. J. Math. Oxford (2) 2 (1951), 85108; (MR 13, 210).CrossRefGoogle Scholar
A canonical basis for the ideals of a polynomial domain’, Amer. Math. Monthly 59 (1952), 379386; (MR 13, 903).CrossRefGoogle Scholar
Some asymptotic formulae in the theory of partitions (II)’, Quart. J. Math. Oxford (2) 4 (1953), 96111; (MR 15, 201).CrossRefGoogle Scholar
Some asymptotic formulae in the theory of partitions’ (with Roth, K. F.), Quart. J. Math. Oxford (2) 5 (1954), 241259; (MR 16, 797).CrossRefGoogle Scholar
Ether drift and gravitational motion’, Phys. Rev. (2) 104 (1956), 17911798; (MR 18, 703).CrossRefGoogle Scholar
Cosmic time and the field equations of general relativity’, (with Kantor, W.), Phys. Rev. (2) 104 (1956), 831834; (MR 19, 103).CrossRefGoogle Scholar
On Borel fields over finite sets’ (with Binet, F.E.), Ann. Math. Statist. 28 (1957). 494498: (MR 19, 1169).Google Scholar
Spinor geometry and general field theory’, J. Math. Mech. 6 (1957), 471517; (MR 20#747).Google Scholar
On a problem of D. R. Hughes’ (with Straus, E.G.), Proc. Amer. Math. Soc. 9 (1958), 157158; (MR 20#73).CrossRefGoogle Scholar
(C, ∞) and (H, ∞) methods of summation’ (with Jakimovski, A.), Pacific J. Math. 8 (1958), 867886; (MR 21#2133).Google Scholar
Regular iteration of real and complex functions’, Acta Math. 100 (1958), 867886; (MR 21#5744).Google Scholar
On the product ’ (with Erdös, P.), Acad. Serbe Sci. Publ. Inst. Math. 13 (1959), 2934; (MR 23#A3721).Google Scholar
Sur un problème de M. Paul Erdös’ (with Schinzel, A.), Acta Szeged. 20 (1959), 221229; (MR 22#3710).Google Scholar
‘Regular growth of real functions’, Short Comrnuns. Internat. Congress Math. pp. 6768, (University Press, Cambridge, 1960).Google Scholar
On the singularities of a Riemannian manifold’, Publ. Math. Debrecen 7 (1960), 285301; (MR 23#A2842).Google Scholar
On the propagation of gravitational waves’, Magyar Tud. Akad. Mat. Kutató Int. Közl. 5 (1960), 315; (MR 23#B2004).Google Scholar
On finite metabelian p-groups with two generators’, Acta Szeged. 21 (1960), 270291; (MR 24#A1941).Google Scholar
On a theorem of Paul Lévy’, Magyar Tud. Akad. Mat. Kutató Int. Közl. 5 (1960), 277282; (MR 27#1733).Google Scholar
On some extremum problems in elementary geometry’ (with Erdds, P.), Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 3– 4 (1960/1961), 5362; (MR 24# A3560).Google Scholar
Fractional iteration of exponentially growing functions’, J. Austral. Math. Soc 2 (1961/1962), 301320; (MR 25#5302).Google Scholar
Tables of the logarithm of iteration of ex – 1’ (with Morris, K.W.), J. Austral. Math. Soc. 2 (1961/1962), 321333; (MR 25#5303).CrossRefGoogle Scholar
Fractional iteration of entire and rational functions’, J. Austral. Math. Soc. 4 (1964), 129142; (MR 29#2368).CrossRefGoogle Scholar
Numerical evaluation of high-dimensional integrals’ (with Sag, T.W.), Math. Comp. 18 (1964), 245253; (MR 29#2969).CrossRefGoogle Scholar
Some estimates of the coefficients in the Chebyshev series expansion of a function’ (with Elliot, D.), Math. Comp. 19 (1965), 2532; (MR 30#2666).CrossRefGoogle Scholar
On a problem of Schütte and Erdös’ (with Szekeres, E.), Math. Gaz. 49 (1965), 290293; (MR 32#4025).CrossRefGoogle Scholar
Behaviour of the Schwarzschild singularity in superimposed gravitational fields’ (with Mysak, L.), Canad. J. Phys. 44 (1966), 617627; (MR 32#8986).CrossRefGoogle Scholar
On the approximation of real numbers by roots of integers’, (with Mahler, K.), Acta Arith. 12 (1966/1967), 315320; (MR 35#130).CrossRefGoogle Scholar
‘Metabelian groups with two generators’, Proc. Internat. Conf. Theory of Groups pp. 323346 (Gordon and Breach, New York, London, Paris, 1967); (MR 36#5226).Google Scholar
On the height of trees’ (with Rényi, A.), J. Austral. Math. Soc. 7 (1967), 497507; (MR 36#2522).CrossRefGoogle Scholar
Analytic matrix functions’ (with Gibson, J.K.), Nieuw Arch Wisk, (3) 15 (1967), 233246; (MR 37#1631).Google Scholar
An inequality for the chromatic number of a graph’ (with Wilf, H. S.), J. Combinatorial Theory 4 (1968), 13; (MR 36#1356).Google Scholar
Kinematic geometry: an axiomatic system for Minkowski space-time’, J. Austral. Math. Soc. 8 (1968), 134160; (MR 37#6098).CrossRefGoogle Scholar
A combinatorial interpretation of Ramanujan's continued fraction’, Canad. Math. Bull. 11 (1968), 405408; (MR 38#1012).CrossRefGoogle Scholar
A new class of symmetric block designs’, J. Combinatorial Theory 6 (1969), 219221; (MR 38#4334).CrossRefGoogle Scholar
Tournaments and Hadamard matrices’, Enseignement Math. (2), 15 (1969), 269278; (MR 40#56).Google Scholar
On a combinatorial generalization of 27 lines associated with a cubic surface’ (with Ahrens, R.W.), J. Austral. Math. Soc. 10 (1969), 485492; (MR 42#4419).CrossRefGoogle Scholar
Ferde konfigurációk [Skew configurations.]’, Mat. Lapok 20 (1969), 4351; (MR 41#3307).Google Scholar
A skew Hadamard matrix of order 52’ (with Blatt, D.), Canad. J. Math. 21 (1969), 13191322; (MR 40#4140).CrossRefGoogle Scholar
Multidimensional continued fractions’, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 13 (1970), 113140 (1971); (MR 47#1753).Google Scholar
Infinite iteration of integral Summation methods’, J. Analyse Math. 24 (1971), 151; (MR 44#681).CrossRefGoogle Scholar
Cyclotomy and complementary difference sets’, Acta Arith. 18 (1971), 349353; (MR 45#209).CrossRefGoogle Scholar
‘The average value of skew Hadamard matrices’, Proc. First Austral. Conf. Combinat. Math. pp. 5559. (TUNRA, Newcastle, 1972); (Zbl. 267.05022).Google Scholar
Polyhedral decompositions of cubic graphs’, Bull. Austral. Math. Soc. 8 (1973), 367387; (MR 48#3785).CrossRefGoogle Scholar
Determinants of skew type ±1 matrices’, Period. Mat. Hungar. 3 (1973), 229234; (Zbl. 267.05021).CrossRefGoogle Scholar
Oriented Tait graphs’, J. Austral. Math. Soc. 16 (1973), 328331; (Zbl. 269.05104).CrossRefGoogle Scholar
‘Polyhedral decomposition of trivalent graphs’, Proc. Second Austral. Conf. Combinat. Math. pp. 125127. (Lecture Notes in Mathematics, Springer No. 403, 1974).CrossRefGoogle Scholar
‘Non-colourable trivalent graphs’ Proc. Third Austral. Conf. Combinat. Math. pp. 227233. (Lecture Notes in Mathematics, Springer No. 452, 1975).CrossRefGoogle Scholar
Spencer, Joel (1973), ‘The art of counting, selected writings of Paul Erdös’, M.I.T. Press.Google Scholar