Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T13:53:21.708Z Has data issue: false hasContentIssue false

A geometrical approach to approximations by continued fractions

Published online by Cambridge University Press:  09 April 2009

H. G. Kopetzky
Affiliation:
Institut für Mathematik und Angewandte Geometrie Montanuniversität LeobenA-8700 Leoben, Austria
F. J. Schnitzer
Affiliation:
Institut für Mathematik und Angewandte Geometrie Montanuniversität LeobenA-8700 Leoben, Austria
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

By simple geometrical considerations new proofs for some classical results are given and also new theorems about approximation by continued fractions are derived. This geometrical approach presents an instructive visualisation of the nature of proximation theorems.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1987

References

[1]Bagemihl, F. and McLaughlin, J. R., ‘Generalization of some classical theorems concerning triples of consecutive convergents to simple continued fractions’, J. Reine Angew. Math. 221 (1966), 146149.Google Scholar
[2]Borel, É., ‘Contribution à l'analyse arithmétique du continu’, J. Math. Pures Appl. (5) 9 (1903), 329375.Google Scholar
[3]Fujiwara, M., ‘Bemerkung zur Theorie der Approximation der irrationalen Zahlen durch rationale Zahlen’, Tôhoku Math. J. 11 (1916), 239242.Google Scholar
[4]Fujiwara, M., ‘Bemerkung zur Theorie der Approximation der irrationalen Zahlen durch rationale Zahlen’, Tôhoku Math. J. 14 (1918), 109115.Google Scholar
[5]Fukasawa, S., ‘Über die Kleinsche geometrische Darstellung des Kettenbruchs’, Japan. J. Math. 2 (1926), 101114.CrossRefGoogle Scholar
[6]Humbert, G., ‘Remarques sur certaines suites d'approximation’, J. Math. Pures Appl. (7) 2 (1916), 155167.Google Scholar
[7]Hurwitz, A., ‘Über die angenäherte Darstellung der Irrationalzahlen durch rationale Brüche’, Math. Ann. 39 (1891), 279284.CrossRefGoogle Scholar
[8]Koksma, J. F., Diophantische Approximationen (Springer-Verlag, Berlin, Heidelberg, New York, 1974 (Reprint)).CrossRefGoogle Scholar
[9]Kopetzky, H. G. und Schnitzer, F. J., ‘Bemerkungen zu einem Approximationssatz für regelmässige Kettenbrüche’, J. Reine Angew. Math. 293/294 (1977), 437440.Google Scholar
[10]Tong, J., ‘The conjugate property of the Borel theorem on Diophantine approximation’, Math. Z. 184 (1983), 151153.Google Scholar
[11]Tong, J., ‘A generalization of the Borel theorem in Diophantine approximation’, Riv. Math. Univ. Parma, IV. Ser. 9 (1983), 121124.Google Scholar
[12]Tong, J., ‘On two theorems of Kopetzky and Schnitzer on the approximation of continued fractions’, J. Reine Angew. Math. 362 (1985), 13.Google Scholar
[13]Vahlen, K. Th., ‘Über Näherungswerte und Kettenbrüche’, J. Reine Angew. Math. 115 (1859), 221233.Google Scholar