Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-04T02:14:58.119Z Has data issue: false hasContentIssue false

Generalized Weyl's theorem and hyponormal operators

Published online by Cambridge University Press:  09 April 2009

A. Arroud
Affiliation:
Groupe d'Analyse et Théorie des Opérateurs (G.A.T.O) Université Mohammed IFaculté des Sciences Département de Mathématiques Oujda Morocco, e-mail: [email protected]@sciences.univ-oujda.ac.ma
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let T be a bounded linear operator acting on a Hilbert space H. The B-Weyl spectrum of T is the set σBW(T) of all λ ∈ Сsuch that T − λI is not a B-Fredholm operator of index 0. Let E(T) be the set of all isolated eigenvalues of T. The aim of this paper is to show that if T is a hyponormal operator, then T satisfies generalized Weyl's theorem σBW(T) = σ(T)/E(T), and the B-Weyl spectrum σBW(T) of T satisfies the spectral mapping theorem. We also consider commuting finite rank perturbations of operators satisfying generalized Weyl's theorem.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2004

References

[1]Barnes, B. A., ‘Riesz points and Weyl's theorem’, Integral Equations Operator Theory 34 (1999), 187196.CrossRefGoogle Scholar
[2]Berkani, M., ‘On a class of quasi-Fredholm operators’, Integral Equations Operator Theory 34 (1999), 244249.CrossRefGoogle Scholar
[3]Berkani, M., ‘B-Weyl spectrum and poles of the resolvent’, J. Math. Anal. Appl. 272 (2002), 596603.CrossRefGoogle Scholar
[4]Berkani, M., ‘Index of B-Fredholm operators and generalization of a Weyl theorem’, Proc. Amer Math. Soc. 130 (2002), 17171723.CrossRefGoogle Scholar
[5]Berkani, M. and Koliha, J. J., ‘Weyl type theorems for bounded linear operators’, Acta Sci. Math. (Szeged) 69 (2003), 359376.Google Scholar
[6]Berkani, M. and Sarih, M., ‘An Atkinson's type theorem for B-Fredholm operators’, Studia Math. 148 (2001), 251257.CrossRefGoogle Scholar
[7]Coburn, L. A., ‘Weyl's theorem for nonnormal operators’, Michigan Math. J. 13 (1966), 285288.CrossRefGoogle Scholar
[8]Djordjević, S. V. and Han, Y. M., ‘Browder's theorems and spectral continuity’, Glasgow Math. J. 42 (2000), 479486.CrossRefGoogle Scholar
[9]Drazin, M. P., ‘Pseudoinverse in associative rings and semigroups’, Amer. Math. Monthly 65 (1958), 506514.CrossRefGoogle Scholar
[10]Hou, J.-C. and Zhang, X.-L., ‘On the Weyl spectrum: Spectral mapping theorem and Weyl's theorem’, J. Math. Anal. Appl. 220 (1998), 760768.CrossRefGoogle Scholar
[11]Koliha, J. J., ‘A generalized Drazin inverse’, Glasgow Math. J. 38 (1996), 367381.CrossRefGoogle Scholar
[12]Lay, D. C., ‘Spectral analysis using ascent, descent, nullity and defect’, Math. Ann. 184 (1970), 197214.CrossRefGoogle Scholar
[13]Lee, S. H. and Lee, W. Y., ‘On Weyl's theorem II’, Math. Japon. 43 (1996), 549553.Google Scholar
[14]Lee, W. Y. and Lee, S. H., ‘A spectral mapping theorem for the Weyl spectrum’, Glasgow Math. J. 38 (1996), 6164.CrossRefGoogle Scholar
[15]Oberai, K. K., ‘On the Weyl spectrum II’, Illinois J. Math. 21 (1977), 8490.CrossRefGoogle Scholar
[16]Roch, S. and Silbermann, B., ‘Continuity of generalized inverses in Banach algebras’, Studia Math. 136 (1999), 197227.Google Scholar
[17]Schechter, M., Principles of functional analysis (Academy Press, New York, 1971).Google Scholar
[18]Weyl, H., ‘Über beschränkte quadratische Formen, deren Differenz vollstetig ist’, Rend. Circ. Mat. Palermo 27 (1909), 373392.CrossRefGoogle Scholar