Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T16:44:38.176Z Has data issue: false hasContentIssue false

A generalisation of the quintuple product identity

Published online by Cambridge University Press:  09 April 2009

M. D. Hirschhorn
Affiliation:
School of Mathematics University of New South WalesKensington, N.S.W. 2033, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The quintuple product identity has appeared many times in the literature. Indeed, no fewer than 12 proofs have been given. We establish a more general identity from which the quintuple product identity follows in two ways.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1988

References

Adiga, C., Berndt, B. C., Bhargava, S. and Watson, G. N. (1985), ‘Chapter 16 of Ramanujan's second notebook: Theta-functions and q-series’, Mem. Amer. Math. Soc. 315.Google Scholar
Andrews, G. E. (1974), ‘Applications of basic hypergeometric functions’, SIAM Rev. 16, 441484.CrossRefGoogle Scholar
Atkin, A. O. L. and Swinnerton-Dyer, P. (1954), ‘Some properties of partitions’, Proc. London Math. Soc. (3) 4, 84106.CrossRefGoogle Scholar
Bailey, W. N. (1951), ‘On the simplification of some identities of the Rogers-Ramanujan type’, Proc. London Math. Soc. (3) 1, 217221.CrossRefGoogle Scholar
Carlitz, L. (1972), ‘Some identities in combinatorial analysis’, Duke Math J. 39, 3137.CrossRefGoogle Scholar
Carlitz, L. and Subbarao, M. V. (1972), ‘On the quintuple product identity’, Proc. Amer. Math. Soc. 32, 4244.CrossRefGoogle Scholar
Fricke, R. (1916), Die Elliptischen Funktionen und ihre Anwendungen, Erste Teil. (Teubner, Leipzig).Google Scholar
Gordon, B. (1961), ‘Some identities in combinatorial analysis’, Quart. J. Math. Oxford Ser. 2, 12, 285290.CrossRefGoogle Scholar
Mordell, L. J. (1962), ‘An identity in combinatorial analysis’, Proc. Glasgow Math. Assoc. 5, 197200.CrossRefGoogle Scholar
Schwartz, H. A. (1893), Formeln und Lehrsätze zum Gebrauche der Elliptischen Funktionen nach Vorlesungen and Aufzeichnungen des Herrn Prof. K. Weierstrass (Berlin).CrossRefGoogle Scholar
Sears, D. B. (1951), ‘On the transformation theory of basic hypergeometric functions’, Proc. London Math. Soc. (2) 53, 158180.CrossRefGoogle Scholar
Sears, D. B. (1952), ‘Two identities of Bailey’, J. London Math. Soc. 27, 510511.CrossRefGoogle Scholar
Slater, L. J. (1966), Generalized hypergeometric functions (Cambridge University Press).Google Scholar
Subbarao, M. V. and Vidyasagar, M. (1970), ‘On Watson's quintuple product identity’, Proc. Amer. Math. Soc. 26, 2327.Google Scholar
Watson, G. N. (1929), ‘Theorems stated by Ramanujan (VII): Theorems on continued fractions’, J. London Math. Soc. 4, 3948.CrossRefGoogle Scholar
Watson, G. N. (1938), ‘Ramanujans Vermutung über Zerfällungsanzahlen’, J. Reine Angew. Math. 179, 97128.CrossRefGoogle Scholar