Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-23T05:43:00.811Z Has data issue: false hasContentIssue false

A general criterion for the existence of infinite Sidon sets

Published online by Cambridge University Press:  09 April 2009

David C. Wilson
Affiliation:
School of MathematicsUniversity of New South WalesKensington, N.S.W. 2033, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let G be any compact group, connected or disconnected, with dual object Ĝ. We define a family of local Sidon subsets of Ĝ in terms of allowable images of the representations. Using this family we develop a straightforward criterion whereby the existence of infinite Sidon subsets of Ĝ may be decided.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1988

References

[1]Boerner, H., Representations of groups (North-Holland Publishing Company, Amsterdam, 1969).Google Scholar
[2]Cartwright, D. I. and McMullen, J. R., ‘A structural criterion for the existence of infinite Sidon sets’, Pacific J. Math. 96 (1981), 301317.CrossRefGoogle Scholar
[3]Cecchini, C., ‘Lacunary Fourier series on compact Lie groups’, J. Functional Analysis 11 (1972), 191203.CrossRefGoogle Scholar
[4]Curtis, C. W. and Reiner, I., Representation theory of finite groups and associative algebras, (Interscience, New York-London-Sydney, 1962).Google Scholar
[5]Dooley, A. H., ‘Norms of characters and lacunarity for compact Lie groups’, J. Functional Analysis 32 (1979), 254267.CrossRefGoogle Scholar
[6]Figà-Talamanca, A. and Rider, D., ‘A theorem of Littlewood and lacunary series for compact groups’, Pacific J. Math. 16 (1966), 505514.CrossRefGoogle Scholar
[7]Giulini, S. and Travaglini, G., ‘L p-estimates for matrix coefficients of irreducible representations of compact groups’, Proc. Amer. Math. Soc. 80 (1980), 448450.Google Scholar
[8]Hewitt, E. and Ross, K. A., Abstract harmonic analysis, Vols. I and II, (Springer-Verlag, New York-Heidelberg-Berlin, 1979 and 1970).CrossRefGoogle Scholar
[9]Hutchinson, M. F., Lacunary sets for connected and totally disconnected compact groups, (Ph.D. thesis, University of Sydney, 1977), Bull. Austral. Math. Soc. 18 (1978), 149151.CrossRefGoogle Scholar
[10]Hutchinson, M. F., ‘Non-tall compact groups admit infinite Sidon sets’, J. Austral. Math. Soc. Ser. A 23 (1977), 467475.CrossRefGoogle Scholar
[11]Hutchinson, M. F., ‘Tall profinite groups’, Bull. Austral. Math. Soc. 18 (1978), 421428.CrossRefGoogle Scholar
[12]Hutchinson, M. F., ‘Local A sets for profinite groups’, Pacific J. Math. 89 (1980), 8188.CrossRefGoogle Scholar
[13]Mackey, G. W., The theory of unitary group representations, (Chicago Lectures in Mathematics, The University of Chicago Press, Chicago-London, 1976).Google Scholar
[14]Price, J. F., Lie groups and compact groups, (London Mathematical Society Lecture Note Series, No. 25, Cambridge University Press, Cambridge-London-New York-Melbourne, 1977).CrossRefGoogle Scholar
[15]Tits, J., Tabellen zu den einfachen Lie gruppen und ihren darstellungen, (Lecture Notes in Math., Vol 40, Springer-Verlag, Berlin-Heidelberg-New York, 1967).CrossRefGoogle Scholar
[16]Wilson, D. C., Structure and existence of Sidon sets on compact groups, (Ph.D. thesis, University of Sydney, 1986),Google Scholar
Bull. Austral. Math. Soc. 35 (1987), 159160.CrossRefGoogle Scholar
[17]Wilson, D. C., ‘On the structure of Sidon sets’, Monatsh. Math. 101 (1986), 6774.CrossRefGoogle Scholar