Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-23T05:56:14.911Z Has data issue: false hasContentIssue false

FLOWS AND INVARIANCE FOR DEGENERATE ELLIPTIC OPERATORS

Published online by Cambridge University Press:  01 August 2011

A. F. M. TER ELST*
Affiliation:
Department of Mathematics, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand (email: [email protected])
DEREK W. ROBINSON
Affiliation:
Mathematical Sciences Institute, Australian National University, Canberra, ACT 0200, Australia (email: [email protected])
ADAM SIKORA
Affiliation:
Department of Mathematics, Macquarie University, Sydney, NSW 2109, Australia (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let S be a sub-Markovian semigroup on L2(ℝd) generated by a self-adjoint, second-order, divergence-form, elliptic operator H with W1,(ℝd) coefficients ckl, and let Ω be an open subset of ℝd. We prove that if either Cc(ℝd) is a core of the semigroup generator of the consistent semigroup on Lp(ℝd)for some p∈[1,]  or Ω has a locally Lipschitz boundary, then S leaves L2 (Ω)invariant if and only if it is invariant under the flows generated by the vector fields ∑ dl=1ckll for all k. Further, for all p∈[1,2] we derive sufficient conditions on the coefficients for the core property to be satisfied. Then by combination of these results we obtain various examples of invariance in terms of boundary degeneracy both for Lipschitz domains and domains with fractal boundaries.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2011

Footnotes

Part of this work was supported by the Marsden Fund Council from Government funding, administered by the Royal Society of New Zealand.

References

[1]Arendt, W., ‘Characterization of semigroups on Banach spaces’, in: One-parameter Semigroups of Positive Operators, Lecture Notes in Mathematics, 1184 (ed. Nagel, R.) (Springer, Berlin, 1986), Ch. A-II.CrossRefGoogle Scholar
[2]Arendt, W. and ter Elst, A. F. M., ‘Sectorial forms and degenerate differential operators’, J. Operator Theory (2011), to appear, arXiv:0812.3944.Google Scholar
[3]Bouleau, N. and Hirsch, F., Dirichlet Forms and Analysis on Wiener Space, de Gruyter Studies in Mathematics, 14 (Walter de Gruyter, Berlin, 1991).CrossRefGoogle Scholar
[4]Campiti, M., Metafune, G. and Pallara, D., ‘Degenerate self-adjoint evolution equations on the unit interval’, Semigroup Forum 57 (1998), 136.CrossRefGoogle Scholar
[5]Davies, E. B., ‘L 1 properties of second order elliptic operators’, Bull. Lond. Math. Soc. 17 (1985), 417436.CrossRefGoogle Scholar
[6]Dungey, N., ter Elst, A. F. M. and Robinson, D. W., Analysis on Lie Groups with Polynomial Growth, Progress in Mathematics, 214 (Birkhäuser, Boston, 2003).CrossRefGoogle Scholar
[7]Eberle, A., Uniqueness and Non-uniqueness of Semigroups Generated by Singular Diffusion Operators, Lecture Notes in Mathematics, 1718 (Springer, Berlin, 1999).CrossRefGoogle Scholar
[8]ter Elst, A. F. M. and Robinson, D. W., ‘Invariant subspaces of submarkovian semigroups’, J. Evol. Equ. 8 (2008), 661671.CrossRefGoogle Scholar
[9]ter Elst, A. F. M. and Robinson, D. W., ‘Uniform subellipticity’, J. Operator Theory 62 (2009), 125149.Google Scholar
[10]ter Elst, A. F.  M., Robinson, D. W., Sikora, A. and Zhu, Y., ‘Dirichlet forms and degenerate elliptic operators’, in: Partial Differential Equations and Functional Analysis, Operator Theory: Advances and Applications, 168 (eds. Koelink, E.et al.) (Birkhäuser, Basel, 2006), pp. 7395.CrossRefGoogle Scholar
[11]ter Elst, A. F. M., Robinson, D. W., Sikora, A. and Zhu, Y., ‘Second-order operators with degenerate coefficients’, Proc. Lond. Math. Soc. 95 (2007), 299328.CrossRefGoogle Scholar
[12]Evans, L. C. and Gariepy, R. F., Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics (CRC Press, Boca Raton, FL, 1992).Google Scholar
[13]Friedrichs, K. O., ‘Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren. I’, Math. Anal. 109 (1934), 465487.CrossRefGoogle Scholar
[14]Fukushima, M., Oshima, Y. and Takeda, M., Dirichlet Forms and Symmetric Markov Processes, de Gruyter Studies in Mathematics, 19 (Walter de Gruyter, Berlin, 1994).CrossRefGoogle Scholar
[15]Gatzouras, D., ‘Lacunarity of self-similar and stochastically self-similar sets’, Trans. Amer. Math. Soc. 352 (2000), 19531983.CrossRefGoogle Scholar
[16]Hille, E., Lectures on Ordinary Differential Equations (Addison-Wesley, Reading, MA, 1969).Google Scholar
[17]Hutchinson, J. E., ‘Fractals and self similarity’, Indiana Univ. Math. J. 30 (1981), 713747.CrossRefGoogle Scholar
[18]Jerison, D. S. and Sánchez-Calle, A., ‘Estimates for the heat kernel for a sum of squares of vector fields’, Indiana Univ. Math. J. 35 (1986), 835854.CrossRefGoogle Scholar
[19]Kato, T., Perturbation Theory for Linear Operators, 2nd edn Grundlehren der Mathematischen Wissenschaften, 132 (Springer, Berlin, 1980).Google Scholar
[20]Oleĭnik, O. A. and Radkevič, E. V., Second Order Equations with Nonnegative Characteristic Form (American Mathematical Society, Providence, RI, 1973).CrossRefGoogle Scholar
[21]Ouhabaz, E.-M., Analysis of Heat Equations on Domains, London Mathematical Society Monographs Series, 31 (Princeton University Press, Princeton, NJ, 2005).Google Scholar
[22]Riesz, F. and Sz. -Nagy, B., Leçons d’analyse fonctionelle, 3rd edn (Gauthier-Villars, Paris, 1955).Google Scholar
[23]Robinson, D. W., ‘Commutator theory on Hilbert space’, Canad. J. Math. 34 (1987), 12351280.CrossRefGoogle Scholar
[24]Robinson, D. W., Elliptic Operators and Lie Groups, Oxford Mathematical Monographs (Oxford University Press, Oxford, 1991).CrossRefGoogle Scholar
[25]Robinson, D. W. and Sikora, A., ‘Degenerate elliptic operators: capacity, flux and separation’, J. Ramanujan Math. Soc. 22 (2007), 385408.Google Scholar
[26]Robinson, D. W. and Sikora, A., ‘Degenerate elliptic operators in one dimension’, J. Evol. Equ. 10 (2010), 731759.CrossRefGoogle Scholar
[27]Robinson, D. W. and Sikora, A., ‘Markov uniqueness of degenerate elliptic operators’, Ann. Sc. Norm. Super. Pisa Cl. Sci. (2011), to appear, arXiv:0912.4536.Google Scholar
[28]Schmuland, B., ‘On the local property for positivity preserving coercive forms’, in: Dirichlet Forms and Stochastic Processes, (eds. Ma, Z. M. and Röckner, M.) (Walter de Gruyter, Berlin, 1995), pp. 345354 . Papers from the International Conference held in Beijing, October 25–31, 1993, and the School on Dirichlet Forms, held in Beijing, October 18–24, 1993.Google Scholar
[29]Strichartz, R. S., ‘Analysis of the Laplacian on the complete Riemannian manifold’, J. Funct. Anal. 52 (1983), 4879.CrossRefGoogle Scholar