Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-20T05:50:16.894Z Has data issue: false hasContentIssue false

Flat functors and free exact categories

Published online by Cambridge University Press:  09 April 2009

Hongde Hu
Affiliation:
Départment de MathématiquesUniversité du Québec à MontréalMontréal, QCCanadaH3C 3P8 e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let C be a small category with weak finite limits, and let Flat(C) be the category of flat functors from C to the category of small sets. We prove that the free exact completion of C is the category of set-valued functors of Flat (C) which preserve small products and filtered colimits. In case C has finite limits, this gives A. Carboni and R. C. Magno's result on the free exact completion of a small category with finite limits.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1996

References

[1]Adàmek, J. and Rosický, J., ‘On weakly locally presentable categories’, Cahiers Topologie Géom. Diff. Catégoriques, 35 (1994), 197–186.Google Scholar
[2]Barr, M., ‘Exact categories’, in: Lecture Notes in Math. 236 (Springer, Berlin, 1971), pp. 1120.CrossRefGoogle Scholar
[3]Barr, M., ‘Representations of categories’, J. Pure Appl. Algebra 41 (1986), 113137.CrossRefGoogle Scholar
[4]Carboni, A. and Magno, R. C., ‘The free exact category on a left exact one’, J. Austral. Math. Soc. (Ser. A) 33 (1982), 295301.CrossRefGoogle Scholar
[5]Carboni, A., ‘Some free constructions in realizability and proof theory’, preprint.CrossRefGoogle Scholar
[6]Freyd, P., ‘Representations in abelian categories’, in: Proceedings of the conference on categorical algebra, La Jolla, 1965 (Springer, Berlin, 1966) pp. 95120.CrossRefGoogle Scholar
[7]Gabriel, P. and Ulmer, F., Lokal Präsentierbare Kategorien, Lecture Notes in Math. 221 (Springer, Berlin, 1971).CrossRefGoogle Scholar
[8]Hu, H., ‘Dualities for accessible categories’, in: Can. Math. Soc. Conference Proceedings 13 (Amer. Math. Soc., Providence, 1992) pp. 211242.Google Scholar
[9]Kelly, G. M., Basic concepts of enriched category theory (Cambridge University Press, 1982).Google Scholar
[10]MacLane, S., Categories for the working mathematician (Springer, Berlin, 1971).Google Scholar
[11]Makkai, M., ‘A theroem on Barr-exact categories, with an infinitary generalization’, Ann. Pure. Appl. Logic 47 (1990), 225268.CrossRefGoogle Scholar
[12]Makkai, M. and Paré, R., Accessible categories: the foundations of categorical model theory, Contemporary Math. 104 (Amer. Math. Soc., Providence, 1990).Google Scholar
[13]Street, R., ‘Fibrations in bicategories’, Cahiers Topologie Géom. Diff. Catégoriques 21 (1980), 111160.Google Scholar