Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T06:16:06.828Z Has data issue: false hasContentIssue false

Fixed points of asymptotically regular multivalued mappings

Published online by Cambridge University Press:  09 April 2009

Ismat Beg
Affiliation:
Quaid-i-Azam UniversityIslamabad, Pakistan
Akbar Azam
Affiliation:
F. G. Post-graduate CollegeIslamabad, Pakistan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Some results on fixed point of asymptotically regular multivalued mapping are obtained in metric spaces. The structure of common fixed points and coincidence points of a pair of compatible multivalued mappings is also discussed. Our work generalizes known results of Aubin and Siegel, Dube, Dube and Singh, Hardy and Rogers, Hu, Iseki, Jungck, Kaneko, Nadler, Ray and Shiau, Tan and Wong.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1992

References

[1]Asad, A. and Sessa, S., ‘Common fixed points for nonself compatible maps on compacta’ (to appear). Presented during the International Conference on Fixed Point Theory and its Application, Marseille (France), 06 510, 1989.Google Scholar
[2]Aubin, J. P., Applied abstract analysis (John Wiley & Sons, New York, 1977).Google Scholar
[3]Aubin, J. P. and Siegel, J., ‘Fixed points and stationary points of dissipative multivalued maps’, Proc. Amer. Math. Soc. 78 (1980), 391398.Google Scholar
[4]Beg, I. and Azam, A., ‘Fixed point theorems for Kannan mappings’, Indian J. Pure and App. Math. 17 (11) (1986), 12701275.Google Scholar
[5]Dube, L. S., ‘A theorem on common fixed points of multivalued mappings’, Annal. Soc. Sci. Bruxells 84 (4) (1975), 463468.Google Scholar
[6]Dube, L. S. and Singh, S. P., ‘On multivalued contraction mapping’, Bull. Math. de'la Soc. Sci. Math. de la R. S. de Roumanie 14 (62) (1970), 307310.Google Scholar
[7]Engl, H. W., ‘Weak convergence of asymptotically regular sequences for nonexpansive mappings and connections with certain Chebyshef-centers’, Nonlinear Anal. 1 (5) (1977), 495501.Google Scholar
[8]Guay, M. D. and Singh, K. L., ‘Fixed points of asymptotically regular mappings’, Math. Vesnik 35 (1983), 101106.Google Scholar
[9]Hardy, G. E. and Rogers, T. D., ‘A generalization of a fixed point theorem of Reich’, Canad. Math. Bull. 16 (1973), 201206.Google Scholar
[10]Hu, T., ‘Fixed point theorems for multivalued mappings’, Canad. Math. Bull. 23 (1980), 193197.CrossRefGoogle Scholar
[11]Iseki, K., ‘Multivalued contraction mappings in complete metric spaces’, Rend. Sem. Math. Univ. Padova 53 (1975), 1519.Google Scholar
[12]Itoh, S. and Takahashi, W., ‘Single valued mappings, multivalued mappings and fixed point theorems’, J. Math. Anal Appl., 59 (1977), 514521.CrossRefGoogle Scholar
[13]Jungck, G., ‘Commuting mappings and fixed points’, Amer. Math. Monthly 83 (1976), 261263.Google Scholar
[14]Jungck, G., ‘Compatible mappings and common fixed points’, Internat. J. Math. and Math. Sci. 9 (1986), 771779.Google Scholar
[15]Jungck, G., ‘Compatible mappings and common fixed points (2)’, Internat. J. Math. and Math. Sci. 9 (1986), 285288.CrossRefGoogle Scholar
[16]Jungck, G., ‘Common fixed points for commuting and compatible maps on compacta’, Proc. Amer. Math. Soc. 103 (3) (1988), 977983.Google Scholar
[17]Kannan, R., ‘Some results on fixed points’, Bull. Calcutta Math. Soc. 60 (1968), 7176.Google Scholar
[18]Kannan, R., ‘Fixed point theorems in reflexive Banach space’, Proc. Amer. Math. Soc. 38 (1973), 111118.Google Scholar
[19]Kaneko, H., ‘Single valued and multivalued f-contraction’, Boll. U.M.I. 44 (1985), 2933.Google Scholar
[20]Kaneko, H., ‘A comparison of contractive conditions for multivalued mappings’, Kobe J. Math. 3 (1986), 3745.Google Scholar
[21]Nadler, S. B. Jr, ‘Multivalued contraction mappings’, Pacific J. Math. 30 (1969), 475480.CrossRefGoogle Scholar
[22]Ray, B. K., ‘On Ciric's fixed point theorem’, Fund. Math. 94 (1977), 221229.CrossRefGoogle Scholar
[23]Reich, S., ‘Fixed points of contractive functions’, Boll. U.M.I. (4) A 5 (1972), 2642.Google Scholar
[24]Rhoades, B. E., ‘A comparison of various definitions of contractive mappings’, Trans. Amer. Math. Soc. 226 (1977), 257290.CrossRefGoogle Scholar
[25]Rhoades, B. E., ‘Contractive definitions revisited, Topological methods in nonlinear functional analysis’, Contemporary Math., Amer. Math. Soc. 21(1983), 189205.CrossRefGoogle Scholar
[26]Rhoades, B. E., Singh, S. L. and Kulshrestha, C., ‘Coincidence theorem for some multi- valued mappings’, Internat. J. Math. and Math. Sci. 7 (3) (1984), 429434.Google Scholar
[27]Rhoades, B. E., Sessa, S., Khan, M. S. and Swaleh, M., ‘On fixed points of asymptotically regular mappings’, J. Austral. Math. Soc. (Series A) 43 (1987), 328346.Google Scholar
[28]Rhoades, B. E., Park, S. and Moon, K. B., ‘On generalization of the Meir-Keeler type contraction maps’, J. Math. Anal. Appl. 146 (1990), 482494.CrossRefGoogle Scholar
[29]Sessa, S., Rhoades, B. E. and Khan, M. S., ‘On common fixed points of compatible mappings in metric and Banach spaces’, Internat. J. Math. and Math. Sci. 11 (2) (1988), 375392.Google Scholar
[30]Shiau, C., Tan, K. K. and Wong, C. S., ‘A class of quasi-nonexpansive multivalued maps’, Canad. Math. Bull. 18 (1975), 709714.CrossRefGoogle Scholar
[31]Wong, C. S., ‘Common fixed points of two mappings’, Pacific J. Math. 48 (1973), 299312.CrossRefGoogle Scholar
[32]Wong, C. S., ‘On Kannan maps’, Proc. Amer. Math. Soc. 47 (1975), 105111.Google Scholar