Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T17:20:59.789Z Has data issue: false hasContentIssue false

Finitely valued commutator sequences

Published online by Cambridge University Press:  09 April 2009

Reinhold Baer
Affiliation:
8053 Zürich, Eierbrechtstr. 29, Switzerland
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

If x and y are elements in the group G, then we denote their commutator by x o y = x-1y-1 = x-1xy; and x o G is the set of all commutators x o g with g ∈ G. A G-commutator sequence is a series of elements ciG with c1 + 1ci O G. Slightly generalizing well known results one proves that the hypercenter of the group G is exacly the set of all elements hG with the property: every G-commutator sequence, containing h, contains 1 [Proposition 1.1].

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1974

References

[1]Baer, Reinhold, ‘The hypercenter of a group’, Acta Math. 89 (1953), 165208.CrossRefGoogle Scholar
[2]Baer, Reinhold, ‘Das Hyperzentrum einer Gruppe. III’, Math. Zeitschr. 59 (1953), 292338.CrossRefGoogle Scholar
[3]Baer, Reinhold, ‘Auflösbare Gruppen mit Maximalbedingung’, Math. Ann. 129 (1955), 139173.CrossRefGoogle Scholar
[4]Baer, Reinhold, ‘Noethersche Gruppen’, Math. Zeitschr. 66 (1957), 269288.CrossRefGoogle Scholar
[5]Baer, Reinhold, ‘Lokal Noethersche Gruppen’, Math. Zeitschr. 66 (1957), 341363.CrossRefGoogle Scholar
[6]Hall, P. and Hartley, B., ‘The stability group of a series of subgroups’, Proc. London Math. Soc. 16 (1966), 139.CrossRefGoogle Scholar
[7]Hall, P. and Kulatilaka, C. R., ‘A property of locally finite groups’, Journal London. Math. Soc. 39 (1964), 235239.CrossRefGoogle Scholar
[8]Huppert, B., Endliche Gruppen I (Springer Verlag; Berlin-Heidelberg-New York 1967).CrossRefGoogle Scholar
[9]Kegel, Otto H. and Wehrfritz, Bertram A. F., Locally Finite Groups (North Holland 1973).Google Scholar
[10]Kurosh, A. G., The Theory of Groups. II. 2nd ed. (Translated and edited by Hirsch, K. A., Chelsea, New York, 1960).Google Scholar
[11]Specht, Wilhelm, Gruppentheorie (Springer Verlag; Berlin-Göttingen-Heidelberg 1956).Google Scholar