Article contents
Finitely generated residually torsion-free nilpotent groups. I
Published online by Cambridge University Press: 09 April 2009
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
The object of this paper is to study the sequence of torsion-free ranks of the quotients by the terms of the lower central series of a finitely generated group. This gives rise to the introduction into the study of finitely generated, residually torison-free nilpotent groups of notions relating to the Gelfand-Kirillov dimension. These notions are explored here. The main result concerning the sequences alluded to is the proof that there are continuously many such sequences.
MSC classification
Secondary:
20F18: Nilpotent groups
- Type
- Research Article
- Information
- Journal of the Australian Mathematical Society , Volume 67 , Issue 3 , December 1999 , pp. 289 - 317
- Copyright
- Copyright © Australian Mathematical Society 1999
References
[1]Alperin, R. C. and Peterson, B. L., ‘Growth functions for residually torsion-free nilpotent groups’, Proc. Amer. Math. Soc. 109 (1990), 585–587.CrossRefGoogle Scholar
[2]Atiyah, M. F. and Macdonald, I. G., Introduction to commutative algebra (Addison-Wesley, Reading, 1969).Google Scholar
[4]Baumslag, G., ‘Reflections on metabelian groups’, Contemp. Math. 109 (1990), 1–9.CrossRefGoogle Scholar
[6]Baumslag, G., ‘Finitely generated residually torsion-free nilpotent groups. II’, Technical Report.Google Scholar
[7]Blackburn, N., ‘Conjugacy in nilpotent groups’, Proc. Amer. Math. Soc. 16 (1965), 143–148.CrossRefGoogle Scholar
[9]Gromov, M., ‘Hyperbolic groups’, in: Essays on group theory (ed. Gersten, S. M.), Math. Sci. Res. Inst. Publ. 8 (Springer, New York, 1987).Google Scholar
[10]Groves, J. R. J. and Wilson, J. S., ‘Finitely presented metanilpotent groups’, J. London Math. Soc. 50 (1994), 87–104.CrossRefGoogle Scholar
[11]Gruenberg, K. W., ‘Residual properties of infinite soluble groups’, Proc. London Math. Soc. (3) 7 (1957), 29–62.CrossRefGoogle Scholar
[12]Hall, P., ‘Finiteness conditions for soluble groups’, Proc. London Math. Soc. (3) 4 (1954), 419–436.Google Scholar
[13]Jennings, S. A., ‘The group ring of a class of infinite nilpotent groups’, Canad. J. Math., 7 (1955), 169–187.CrossRefGoogle Scholar
[14]Krause, G. R. and Lenagan, T. H., Growth of algebras and Gelfand-Kirillov dimension, Research Notes in Math. 166 (Pitman, Berlin, 1985).Google Scholar
[15]Kurosh, A. G., The theory of groups I, II, 2nd edition, translated and edited by Hirsch, K. A. (Chelsea, New York, 1960).Google Scholar
[16]Lichtman, A. I., ‘The residual nilpotence of the multiplicative group of a skew field generated by universal enveloping algebras’, J. Algebra 112 (1988), 250–263.CrossRefGoogle Scholar
[17]Magnus, W., ‘Beziehunngen zwischen Gruppen und Idealen in einem speziellen Ring’, Math. Ann. 111 (1935), 259–280.CrossRefGoogle Scholar
[18]Magnus, W., Karrass, A. and Solitar, D., Combinatorial group theory (Wiley, New York, 1966).Google Scholar
[19]Malčev, A. I., ‘Generalized nilpotent algebras and their associated groups’, Math. Sbornik (N.S.) 25 (67) (1949), 347–366.Google Scholar
[20]Miller, C. F., On group-theoretic decision problems and their classification, Ann. of Math. Studies 68 (Princeton University Press, Princeton, 1971).Google Scholar
[21]Miller, C. F., ‘Decision problems for groups-survey and reflections’, in: Algorithms and classification in combinatorial group theory (eds. Baumslag, G. and Miller, C. F. III), Math. Sci. Res. Inst. Publ. 23 (Springer, Berlin, 1990).Google Scholar
[22]Milnor, J., ‘A note on curvature and fundamental groups’, J. Differential Geom. 2 (1968), 1–7.CrossRefGoogle Scholar
[23]Neumann, B. H., Neumann, H. and Neumann, P., ‘Wreath products and varieties of groups’, Math. Z. 80 (1962), 44–62.CrossRefGoogle Scholar
[24]Neumann, H., Varieties of groups, Ergebnisse der Mathematik, Bd. 37 (Springer, New York, 1967).CrossRefGoogle Scholar
[25]Rabin, M. O., ‘Recursive unsolvability of group theoretic problems’, Ann. of Math. (2) 67 (1958), 172–194.CrossRefGoogle Scholar
[26]Robinson, D. J. S., A course in the theory of groups, Graduate Texts in Math. 80 (Springer, New York, 1982).CrossRefGoogle Scholar
[27]Segal, D., Polycyclic groups (Cambridge University Press, Cambridge, 1983).CrossRefGoogle Scholar
[28]Specker, E., ‘Additive Gruppen von Folgen ganzer Zahlen’, Portugal. Math. 9 (1950), 131–140.Google Scholar
- 4
- Cited by