Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-22T23:02:42.428Z Has data issue: false hasContentIssue false

Finite simple groups with nilpotent third maximal subgroups

Published online by Cambridge University Press:  09 April 2009

T. M. Gagen
Affiliation:
Australian National University, Canberra
Z. Janko
Affiliation:
Monash University, Melbourne
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We say that a subgroup H is an n-th maximal subgroup of G if there exists a chain of subgroups G = G0 > G1 > … > Gn = H such that each Gi is a maximal subgroup of Gi-1, i = 1, 2, …, n. The purpose of this note is to classify all finite simple groups with the property that every third maximal subgroup is nilpotent.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1966

References

[1]Berkoviĉ, Ja. G., ‘The existence of subgroups of a finite non-soluble group’, Doki. A kad. Nauk 156 (1964), 12551257.Google Scholar
[2]Iwasawa, K., ‘Über die Struktur der endlichen Gruppen, deren echte Untergruppen sämtlich nilpotent sind’, Proc. Phys. Math. Soc. Japan 23 (1941), 14.Google Scholar
[3]Janko, Z., ‘Endliche Gruppen mit lauter nilpotenten zweitmaximalen Untergruppen’, Math. Zeitschr. 79 (1962), 422424.CrossRefGoogle Scholar
[4]Miller, G. A., Blichfeldt, H. F. and Dickson, L. E., Theory and applications of finite groups (New York 1938).Google Scholar
[5]Suzuki, M., ‘On finite groups with cyclic Sylow subgroups for all odd primes’, Amer. J. Math. 77 (1955). 657691.CrossRefGoogle Scholar
[6]Thompson, J. G., ‘Some simple groups’, Symposium on group theory (Harvard, 1963).Google Scholar