Published online by Cambridge University Press: 13 January 2020
We consider a multilinear kernel operator between Banach function spaces over finite measures and suitable order continuity properties, namely $T:X_{1}(\,\unicode[STIX]{x1D707}_{1})\times \cdots \times X_{n}(\,\unicode[STIX]{x1D707}_{n})\rightarrow Y(\,\unicode[STIX]{x1D707}_{0})$. Then we define, via duality, a class of linear operators associated to the $j$-transpose operators. We show that, under certain conditions of $p$th power factorability of such operators, there exist vector measures $m_{j}$ for $j=0,1,\ldots ,n$ so that $T$ factors through a multilinear operator $\widetilde{T}:L^{p_{1}}(m_{1})\times \cdots \times L^{p_{n}}(m_{n})\rightarrow L^{p_{0}^{\prime }}(m_{0})^{\ast }$, provided that $1/p_{0}=1/p_{1}+\cdots +1/p_{n}$. We apply this scheme to the study of the class of multilinear Calderón–Zygmund operators and provide some concrete examples for the homogeneous polynomial and multilinear Volterra and Laplace operators.
Communicated by C. Meaney