Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T15:23:21.822Z Has data issue: false hasContentIssue false

EXPONENTIAL AND CHARACTER SUMS WITH MERSENNE NUMBERS

Published online by Cambridge University Press:  26 April 2012

WILLIAM D. BANKS
Affiliation:
Department of Mathematics, University of Missouri, Columbia, MO 65211, USA (email: [email protected])
JOHN B. FRIEDLANDER
Affiliation:
Department of Mathematics, University of Toronto, Toronto, Ontario M5S 3G3, Canada (email: [email protected])
MOUBARIZ Z. GARAEV
Affiliation:
Instituto de Matemáticas, Universidad Nacional Autónoma de México, C. P. 58089, Morelia, Michoacán, México (email: [email protected])
IGOR E. SHPARLINSKI*
Affiliation:
Department of Computing, Macquarie University, Sydney, NSW 2109, Australia (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give new bounds on sums of the form ∑ nNΛ(n)exp (2πiagn/m) and ∑ nNΛ(n)χ(gn+a), where Λ is the von Mangoldt function, m is a natural number, a and g are integers coprime to m, and χ is a multiplicative character modulo m. In particular, our results yield bounds on the sums ∑ pNexp (2πiaMp/m) and ∑ pNχ(Mp) with Mersenne numbers Mp=2p−1, where p is prime.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2012

Footnotes

Friedlander was partially supported by NSERC Grant A5123 and Shparlinski was partially supported by ARC Grant DP1092835.

References

[1]Banks, W., Conflitti, A., Friedlander, J. B. and Shparlinski, I. E., ‘Exponential sums over Mersenne numbers’, Compositio Math. 140 (2004), 1530.CrossRefGoogle Scholar
[2]Banks, W. D., Friedlander, J. B., Garaev, M. Z. and Shparlinski, I. E., ‘Character sums with exponential functions over smooth numbers’, Indag. Math. 17 (2006), 157168.CrossRefGoogle Scholar
[3]Banks, W. D., Friedlander, J. B., Garaev, M. Z. and Shparlinski, I. E., ‘Double character sums over elliptic curves and finite fields’, Pure Appl. Math. Q. 2 (2006), 179197.CrossRefGoogle Scholar
[4]Davenport, H., Multiplicative Number Theory, 2nd edn (Springer, New York, 1980).CrossRefGoogle Scholar
[5]Dobrowolski, E. and Williams, K. S., ‘An upper bound for the sum ∑ a+Hn=a+1f(n) for a certain class of functions f’, Proc. Amer. Math. Soc. 114 (1992), 2935.Google Scholar
[6]El Mahassni, E. and Shparlinski, I. E., ‘On the distribution of the elliptic curve power generator’, Proc. 8th Conf. on Finite Fields and Appl., Contemporary Mathematics, 461 (American Mathematical Society, Providence, RI, 2008), pp. 111–119.CrossRefGoogle Scholar
[7]Garaev, M. Z., ‘Double exponential sums related to Diffie–Hellman distributions’, Int. Math. Res. Not. 17 (2005), 10051014.CrossRefGoogle Scholar
[8]Garaev, M. Z., ‘An estimate of Kloosterman sums with prime numbers and an application’, Mat. Zametki 88 (2010), 365373 (in Russian).Google Scholar
[9]Garaev, M. Z. and Karatsuba, A. A., ‘New estimates of double trigonometric sums with exponential functions’, Arch. Math. 87 (2006), 3340.CrossRefGoogle Scholar
[10]Garaev, M. Z. and Shparlinski, I. E., ‘The large sieve inequality with exponential functions and the distribution of Mersenne numbers modulo primes’, Int. Math. Res. Not. 39 (2005), 23912408.CrossRefGoogle Scholar
[11]Hardy, G. H. and Wright, E. M., An Introduction to the Theory of Numbers (Oxford University Press, Oxford, 1979).Google Scholar
[12]Iwaniec, H. and Kowalski, E., Analytic Number Theory (American Mathematical Society, Providence, RI, 2004).Google Scholar
[13]Korobov, N. M., ‘On the distribution of digits in periodic fractions’, Mat. Sb. 89 (1972), 654670 (in Russian); English translation in Math. USSR–Sb. 18 (1972), 659–676.Google Scholar
[14]Korobov, N. M., Exponential Sums and their Applications (Kluwer Academic Publishers, Dordrecht, 1992).CrossRefGoogle Scholar
[15]Vaughan, R. C., ‘An elementary method in prime number theory’, Acta Arith. 37 (1980), 111115.CrossRefGoogle Scholar
[16]Yu, H. B., ‘Estimates of character sums with exponential function’, Acta Arith. 97 (2001), 211218.CrossRefGoogle Scholar