Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-24T01:04:11.611Z Has data issue: false hasContentIssue false

Existence results for differential equations with reflection of the argument

Published online by Cambridge University Press:  09 April 2009

Donal O'Regan
Affiliation:
Department of Mathematics, University College Galway, Galway, Ireland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Existence principles are given for systems of differential equations with reflection of the argument. These are derived using fixed point analysis, specifically the Nonlinear Alternative. Then existence results are deduced for certain classes of first and second order equations with reflection of the argument.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1994

References

[1]Aftabizadeh, A. R., Huang, Y. K. and Wiener, J., ‘Bounded solutions for differential equations with reflection of the argument’, J. Math. Anal. Appl. 135 (1988) 3137.CrossRefGoogle Scholar
[2]Aftabizadeh, A. R. and Wiener, J., ‘Boundary value problems for differential equations with reflection of argument’, Internet. J. Math. Math. Sci. 8 (1985), 151163.Google Scholar
[3]Bobisud, L. E., O'Regan, D. and Royalty, W. D., ‘Singular boundary value problems’, Applicable Anal. 23 (1986), 233243.CrossRefGoogle Scholar
[4]Dugundji, J. and Granas, A., Fixed point theory, Vol. 1, Monograthie Matematyczne (PWN, Warsaw, 1982).Google Scholar
[5]Frigon, M., Granas, A. and Guennoun, Z., ‘Sur l'intervalle maximal d'existence de solutions pour des inclusions différentialles’, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), 747750.Google Scholar
[6]Frigon, M. and O'Regan, D., ‘On a generalization of a theorem of S. Bernstein’, Ann. Polon. Math. 48 (1988), 297306.CrossRefGoogle Scholar
[7]Granas, A. and Guennoun, Z., ‘Quelques résultants dans la théorie de Bernstein-Carathéodory de l'equations y″ = f (t, y, y′)’, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), 703706.Google Scholar
[8]Granas, A., Guenther, R. B. and Lee, J. W., ‘Nonlinear boundary value problems for ordinary differential equations’, Dissertationes Mathematicae (Warsaw, 1985).Google Scholar
[9]Granas, A., Guenther, R. B. and Lee, J. W., ‘Existence for classical and Carathéodory solutions of nonlinear systems and applications’, in: Proceedings of the international conference on theory and applications of differential equations (Ohio University Press, Athens, 1988) pp. 353364.Google Scholar
[10]Granas, A., Guenther, R. B. and Lee, J. W., ‘Some general existence principles in the Carathéodory theory of nonlinear differential systems’, J. Math. Pures. Appl. 70 (1991), 153196.Google Scholar
[11]Gupta, C. P., ‘Boundary value problems for differential equations in Hilbert spaces involving reflection of the argument’, J. Math. Anal. Appl. 128 (1987), 375388.CrossRefGoogle Scholar
[12]Gupta, C. P., ‘Existence and uniqueness theorems for boundary value problems involving reflection of the argument’, Nonlinear Anal. 11 (1987), 10751083.CrossRefGoogle Scholar
[13]Lee, J. W. and O'Regan, D., ‘Topological Transversality: Applications to initial value problems’, Ann. Polon. Math. 48 (1988), 247252.CrossRefGoogle Scholar
[14]Lee, J. W. and O'Regan, D., ‘Existence results for differential delay equations I’, J. Differential Equations 102 (1993), 342359.CrossRefGoogle Scholar
[15]O'Regan, D., ‘Second and higher order systems of boundary value problems’, J. Math. Anal. Appl. 156 (1991), 120149.CrossRefGoogle Scholar
[16]Przeworska-Rolewicz, D., ‘Equations with transformed argument – an algebraic approach’ (Panstwowe Wydawnictwo Naukowe, Warsaw, 1973).Google Scholar