Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T06:28:10.838Z Has data issue: false hasContentIssue false

Equivariant holomorphic maps into the Siegel disc and the metaplectic representation

Published online by Cambridge University Press:  09 April 2009

Jean-Louis Clerc
Affiliation:
Institut Elie Cartan Université Henri Poincaré Nancy 1B.P. 239 54506 Vandoeuvre-lès-Nancy CedexFrance e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We restrict the metaplectic representation to subgroups G of the symplectic group associated to equivariant holomorphic maps into the Siegel disc. We describe the invariant subspaces of the decomposition, and reduce the problem to the decomposition of a space of ‘harmonic’ polynomials under the action of the maximal compact subgroup of G.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1997

References

[1]Bargmann, V., ‘Group representations on Hilbert spaces of analytic functions’, in: Analysis methods in mathematical physics (Gordon and Breach, New-York, 1970) pp. 2763.Google Scholar
[2]Davidson, M., ‘The harmonic representation of U (p, q) and its connection with the generalized unit disc’, Pacific J. Math. 129 (1987), 3355.CrossRefGoogle Scholar
[3]Deligne, P., ‘Groupe de Heisenberg et réalité’, J. Amer. Math. Soc. 4 (1991), 197206.Google Scholar
[4]Folland, G., Harmonic analysis in phase space, Ann. of Math. Stud. 122 (Princeton University Press, Princeton, 1989).CrossRefGoogle Scholar
[5]Howe, R., Dual pairs in physics: Harmonic oscillators, photons, electrons and singletons, Lectures in Appl. Math. 21 (Amer. Math. Soc., Providence, 1985).Google Scholar
[6]Howe, R., ‘The oscillator semigroup’, in: The mathematical heritage of Hermann Weyl, Proc. Sympos. Pure Math. 48 (Amer. Math. Soc., Providence, 1988) pp. 61132.CrossRefGoogle Scholar
[7]Itzykson, C., ‘Remarks on boson commutation rules’, Comm. Math. Phys. 4 (1967), 92122.CrossRefGoogle Scholar
[8]Kashiwara, M. and Vergne, M., ‘On the Segal-Shale-Weil representations and the harmonic polynomials’, Invent. Math. 44 (1978), 147.CrossRefGoogle Scholar
[9]Lion, G. and Vergne, M., The Weil representation, Maslov index and theta series, Progr. Math. 6 (Birkhaüser, Boston, 1980).CrossRefGoogle Scholar
[10]Satake, I., ‘Holomorphic imbeddings of symmetric domains into a Siegel space’, Amer. J. Math. 87 (1965), 425461.CrossRefGoogle Scholar
[11]Satake, I., Algebraic structures of symmetric domains (Iwanami-Shoten and Princeton University Press, Princeton, 1980).Google Scholar
[12]Weil, A., ‘Sur certains groupes d'opérateurs unitaires’, Acta Math. 111 (1964), 143211.CrossRefGoogle Scholar