Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T23:08:11.003Z Has data issue: false hasContentIssue false

Ends of locally compact groups and their coset spaces

Published online by Cambridge University Press:  09 April 2009

C. H. Houghton
Affiliation:
Department of Pure Mathematics, University College, Cardiff, Wales
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Freudenthal [5, 7] defined a compactification of a rim-compact space, that is, a space having a base of open sets with compact boundary. The additional points are called ends and Freudenthal showed that a connected locally compact non-compact group having a countable base has one or two ends. Later, Freudenthal [8], Zippin [16], and Iwasawa [11] showed that a connected locally compact group has two ends if and only if it is the direct product of a compact group and the reals.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1974

References

[1]Abels, H., ‘Enden von Räumen mit eigentlichen Transformationsgruppen’, Comment. Math. Helv. 47 (1972), 457473.CrossRefGoogle Scholar
[2]Banaschewski, B., ‘On Wallmann's method of compactification’, Math. Nach. 27 (1963), 105114.CrossRefGoogle Scholar
[3]Cohen, D. E., Groups of cohomological dimension one, (Springer-Verlag, Berlin, 1972).CrossRefGoogle Scholar
[4]Fan, Ky and Gottesman, N., ‘On compactifications of Freudenthal and Wallmann’, Indag. Math. 14 (1952), 504510.CrossRefGoogle Scholar
[5]Freudenthal, H., ‘Neuaufbau der Endentheorie’, Ann. of Math. 43 (1942), 261279.CrossRefGoogle Scholar
[6]Freudenthal, H., ‘Über die Enden diskreter Räume and Gruppen’, Comment. Math. Helv. 17 (1944), 138.CrossRefGoogle Scholar
[7]Freudenthal, H., ‘Kompaktisierungen und Bikompaktisierungen’, Indag. Math. 13 (1951), 184192.CrossRefGoogle Scholar
[8]Freudenthal, H., ‘La structure des groupes à deux bouts et des groupes triplement transitifs’, Indag. Math. 13 (1951), 288294.CrossRefGoogle Scholar
[9]Hofmann, K. H. and Mostert, P., ‘Splitting in topological groups’, Mem. Amer. Math. Soc. 43 (1963).Google Scholar
[10]Hopf, H., ‘Enden offener Räume und unendliche diskontinuerliche Gruppen’, Comment. Math. Helv. 16 (1943), 81100.CrossRefGoogle Scholar
[11]Iwasawa, K., ‘Topological groups with invariant neighbourhoods of the identity’, Ann. of Math. 54 (1951), 345348.CrossRefGoogle Scholar
[12]Njåstad, O., ‘On Wallmann-type compactifications’, Math. Z. 91 (1966), 267276.CrossRefGoogle Scholar
[13]Specker, E., ‘Endenverbände von Räumen und Gruppen’, Math. Ann. 122 (1950), 167174.CrossRefGoogle Scholar
[14]Stallings, J., Groups theory and three-dimensional manifolds, (Yale Mathematical Monographs 4, 1971).Google Scholar
[15]Wu, T. S., ‘A certain type of locally compact totally disconnected topological group’, Proc. Amer. Math. Soc. 23 (1969), 613614.CrossRefGoogle Scholar
[16]Zippin, L., ‘Two-ended topological groups’, Proc. Amer. Math. Soc. 1 (1950), 309315.CrossRefGoogle Scholar