Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T14:23:30.390Z Has data issue: false hasContentIssue false

The embeddability of ring and semigroup amalgams is undecidable

Published online by Cambridge University Press:  09 April 2009

Marcel Jackson
Affiliation:
Discipline of Mathematics University of TasmaniaGPO Box 252-37 Hobart 7001Australia email: [email protected] Department of Mathematics La Trobe UniversityBundoora VIC 3083Australia e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that there is no algorithm to determine when an amalgam of finite rings (or semigroups) can be embedded in the class of rings or in the class of finite rings (respectively, in the class of semigroups or in the class of finite semigroups). These results are in marked contrast with the corresponding problems for groups where every amalgam of finite groups can be embedded in a finite group.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2000

References

[1]Clifford, A. H. and Preston, G. B., The algebraic theory of semigroups, Volumes 1, 2, (American Mathematical Society, Providence, RI, 1961, 1967).Google Scholar
[2]Hall, T. E., ‘Representation extension and amalgamation for semigroups’, Quart. J. Math. Oxford (2) 29 (1978), 309334.CrossRefGoogle Scholar
[3]Hall, T., Kublanovsky, S., Margolis, S., Sapir, M. and Trotter, P., ‘Decidable and undecidable problems related to finite 0-simple semigroups’, J. Pure Appl. Algebra 119 (1997), 7596.CrossRefGoogle Scholar
[4]Howie, J. M., ‘An embedding theorem with amalgamation for semigroups’, Proc. London Math. Soc. (3), 12 (1962), 511534.CrossRefGoogle Scholar
[5]Howie, J. M., Fundamentals of semigroup theory, 2nd edition (Oxford University Press, New York, 1995).CrossRefGoogle Scholar
[6]Jackson, M. G., ‘Some undecidable embedding problems for finite semigroups’, Proc. Edinburgh Math. Soc. (II) 42 (1999) 113125.CrossRefGoogle Scholar
[7]Kharlampovich, O. G. and Sapir, M. V., ‘Algorithmic problems in varieties’, Internat. J. Algebra Comput. 5 (1995), 379602.CrossRefGoogle Scholar
[8]Kublanovsky, S. and Sapir, M. V., ‘Potential divisibility in finite semigroups is undecidable’, Internat. J. Algebra Comput. 8 (1998), 671679.CrossRefGoogle Scholar
[9]Kublanovsky, S., ‘A variety where the set of subalgebras of finite simple algebras is not recursive’, Internat. J. Algebra Comput. 8 (1998), 680688.CrossRefGoogle Scholar
[10]Okniński, J. and Putcha, M. S., ‘Embedding finite semigroup amalgams’, J. Austral. Math. Soc. (Series A) 51 (1991), 489496.CrossRefGoogle Scholar
[11]Sapir, M. V., ‘Eventually ℋ-related sets and systems of equations over finite semigroups and rings’, J. Algebra 183 (1996), 365377.CrossRefGoogle Scholar
[12]Sapir, M. V., ‘Algorithmic problems for amalgams of finite semigroups’, to appear in J. Algebra.Google Scholar
[13]Schreier, O., ‘Die Untergruppen der freien Gruppen’, Abhandlungen aus dem mathematischen Seminar der Hansischen Universität Hamburg 5 (1927), 161183.CrossRefGoogle Scholar