Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-06T00:21:23.277Z Has data issue: false hasContentIssue false

Each join-completion of a partially ordered set in the solution of a universal problem

Published online by Cambridge University Press:  09 April 2009

Jürgen Schmidt
Affiliation:
Department of Mathematics, University of Houston, Houston, Texas 77004, U. S. A.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The main result of this paper is the theorem in the title. Only special cases of it seem to be known so far. As an application, we obtain a result on the unique extension of Galois connexions. As a matter of fact, it is only by the use of Galois connexions that we obtain the main result, in its present generality.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1974

References

[1]Aumann, G., Reellee Fanktionen. (Berlin 1954).CrossRefGoogle Scholar
[2]Aumann, G., ‘Bemerkung über Galois-Verbindungen’, S. Ber. math. nat. Kl. Bayer. Akad. Wiss. 1955, 281284.Google Scholar
[3]Banaschewski, B., ‘Hüllensysteme und Erweiterungen von Quasi-Ordnungen’, Z. math Logik Grand. Math. 2 (1956), 117130.CrossRefGoogle Scholar
[4]Bruns, G., ‘Darstellungen und Erweiterungen geordneter Mengen’, J. reine angew. Math. 209 (1962), 167200.CrossRefGoogle Scholar
[5]Doctor, H. P., Extensions of a partially ordered Set. Thesis (Hamilton 1967.)Google Scholar
[6]Everett, C. J., ‘Closure operators and Galois theory in lattices’, Trans. Amer. Math. Soc. 55 (1944), 514535.CrossRefGoogle Scholar
[7]Ore, O., ‘Galois connexions’, Trans. Amer. Math. Soc. 55 (1944), 493513.CrossRefGoogle Scholar
[8]Pickert, G., ‘Bemerkungen über Galois-Verbindungen, Arch. Math. 3 (1952), 285289.CrossRefGoogle Scholar
[9]Raney, G. N., ‘Tight Galois connections and complete distributivity’, Trans. Amer. Math. Soc. 97 (1960), 723730.CrossRefGoogle Scholar
[10]Schmidt, J., ‘Abgeschlossenheits — und Homomorphiebegriffe in der Ordungstheorie’, Wiss. Z. Humboldt-Univ. Berlin, math. nat. R. 3. (1953/1954), 223225.Google Scholar
[11]Schmidt, J., ‘Zur Kennzeichnung der Dedekind-MacNeilleschen Hülle einer geordneten Menge’, Arch. Math. 7, (1956), 241249.CrossRefGoogle Scholar
[12]Schmidt, J., ‘Universal and internal properties of some extensions of partially ordered sets’, J. reine angew. Math. 253 (1972), 2842.Google Scholar
[13]Schmidt, J., ‘Universal and internal properties of some completions of k-join-semilattices and k-join-distributive partially ordered sets’, J. reine angew. Math. 255 (1972), 822.Google Scholar
[14]Wright, F. B., ‘Polarity and duality’, Pacif. J. Math. 10 (1960), 723730.CrossRefGoogle Scholar