Published online by Cambridge University Press: 09 April 2009
Invoking a recent characterization of Optimality for a convex programming problem with finite dimensional range without any constraint qualification given by Borwein and Wolkowicz, we establish duality theorems. These duality theorems subsume numerous earlier duality results with constraint qualifications. We apply our duality theorems in the case of the objective function being the sum of a positively homogeneous, lower-semi-continuous, convex function and a subdifferentiable convex function. We also study specific problems of the above type in this setting.