No CrossRef data available.
Published online by Cambridge University Press: 09 April 2009
In this note we prove a discrete analogue to the following Paley–Weiner theorem: Let f be the restriction to the line of a bounded analytic function in the upper half plane; then the spectrum of f is contained in ([0, ∈). The discrete analogue of complex analysis is the theory of discrete analytic functions invented by Lelong-Ferrand (1944) and developed by Duffin (1956) and others.