Published online by Cambridge University Press: 09 April 2009
A crack is assumed to be the union of two smooth plane surfaces of which various parts may be in contact, while the remainder will not. Such a crack in an isotropic elastic solid is an obstacle to the propagation of plane pulses of the scalar and vector velocity potential so that both reflected and diffracted fields will be set up. In spite of the non-linearity which is present because the state of the crack, and hence the conditions to be applied at the surfaces, is a function of the dependent variables, it is possible to separate incident step-function pulses into either those of a tensile or a compressive nature and the associated scattered field may then be calculated. One new feature which arises is that following the arrival of a tensile field which tends to open up the crack there is necessarily a scattered field which causes the crack to close itself with the velocity of free surface waves.