Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-20T06:24:05.677Z Has data issue: false hasContentIssue false

Differences of functions and measures

Published online by Cambridge University Press:  09 April 2009

R. E. Edwards
Affiliation:
Department of MathematicsInstitute of Advanced Studies Australian National University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Throughout this paper, G will denote a locally compact Hausdorff group with a chosen left Haar measure m. For each sG, τs denotes the left translation operator which acts on functions ƒ according to the rule; τsƒ(x) = ƒ(s−1x) and on measures or distributions in the corresponding way. The associted left difference operators ts−1 is denoted by Δs. On occasions it will be more convenient to write τ(s) and Δ(s) in place of τs and Δs.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1968

References

[1]de Bruijn, N. G., ‘Functions whose differences belong to a given class’, Nieuw Arch. Wiskunde (2) 23 (1951). 194218.Google Scholar
[2]de Bruijn, N. G., ‘A difference property for Riemann integrable functions and for some similar classes of functions, Nederl. Akad. Wetensch. Proc. Ser. A 55 (1952), 145151.CrossRefGoogle Scholar
[3]Edwards, R. E., ‘Translates of L∞ functions and of bounded measures’, J. Austr. Math. Soc. 4 (1964), 304409.Google Scholar
[4]Edwards, R. E., Functional Analysis Theory and Applications (Holt, Rinehart & Winston, Inc., New York, 1965).Google Scholar
[5]Schwartz, L., Théorie des Distributions, Tomes I, II (Hermann et Cie, Paris, 1950, 1951).Google Scholar
[6]Edwards, R. E., ‘Criteria for Fourier transforms’. J. Austr. Math. Soc. 7 (1967), 239246.CrossRefGoogle Scholar
[7]Rudin, W., Fourier analysis on groups (Interscience Publishers, New York, 1962).Google Scholar
[8]Edwards, R. E., ‘Uniform approximation on noncompact spaces’. Trans. Amer. Math. Soc. 122 (1966), 249276.CrossRefGoogle Scholar
[9]Edwards, R. E., ‘Supports and singular supports of pseudomeasures’, J. A ustr. Math. Soc. 6 (1966), 6575.CrossRefGoogle Scholar
[10]Edwards, R. E., ‘Changing signs of Fourier coefficients’, Pacific J. Math. 15 (1965), 463475.CrossRefGoogle Scholar
[11]Kahane, J.-P. et Salem, R., Ensembles parfaits et séries trigonométriques (Hermann et Cie, Paris, 1963).Google Scholar
[12]Bary, N., A treatise on trigonometric series, Vols. I, II (Pergamon Press, Oxford, 1964).Google Scholar
[13]Hewitt, E. and Ross, K. A., Abstract Harmonic Analysis, I (Springer-Verlag, BerlinGöttingen-Heidelberg, 1963).Google Scholar
[14]Kemperman, J. H. B., ‘A general functional equation’, Trans. Amer. Math. Soc. 86 (1957), 2856.CrossRefGoogle Scholar
[15]Carroll, F. W., ‘Functions whose differences belong to Lp (0, 1)’, Nederl. Akad. Wetensch. Proc. Ser. A 67 (1964), 250255.CrossRefGoogle Scholar
[16]Carroll, F. W., ‘A difference property for polynomials and exponential polynomials on abelian locally compact groups’, Trans. Amer. Math. Soc. 114 (1965), 147155.CrossRefGoogle Scholar