No CrossRef data available.
Article contents
DETERMINING ASCHBACHER CLASSES USING CHARACTERS
Published online by Cambridge University Press: 11 November 2014
Abstract
Let ${\rm\Delta}:G\rightarrow \text{GL}(n,K)$ be an absolutely irreducible representation of an arbitrary group
$G$ over an arbitrary field
$K$; let
${\it\chi}:G\rightarrow K:g\mapsto \text{tr}({\rm\Delta}(g))$ be its character. In this paper, we assume knowledge of
${\it\chi}$ only, and study which properties of
${\rm\Delta}$ can be inferred. We prove criteria to decide whether
${\rm\Delta}$ preserves a form, is realizable over a subfield, or acts imprimitively on
$K^{n\times 1}$. If
$K$ is finite, we can decide whether the image of
${\rm\Delta}$ belongs to certain Aschbacher classes.
MSC classification
- Type
- Research Article
- Information
- Copyright
- © 2014 Australian Mathematical Publishing Association Inc.
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20160921005542027-0186:S144678871400055X:S144678871400055X_inline11.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20160921005542027-0186:S144678871400055X:S144678871400055X_inline12.gif?pub-status=live)