Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T04:00:07.816Z Has data issue: false hasContentIssue false

Cyclic permutable subgroups of finite groups

Published online by Cambridge University Press:  09 April 2009

John Cossey
Affiliation:
Mathematical Department, School of Mathematical Sciences, Canberra ACT 0200, Australia
Stewart E. Stonehewer
Affiliation:
Mathematical Institute, University of WarwickCoventry CV4 7 AL, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The authors describe the structure of the normal closure of a cyclic permutable subgroup of odd order in a finite group.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2001

References

[1]Berger, T. E. and Gross, F., ‘A universal example of a core-free permutable subgroup’, Rocky Mountain J. Math. 12 (1982), 345365.Google Scholar
[2]Bradway, R. H., Gross, F. and Scott, W. R., ‘The nilpotence class of core-free permutable subgroups’, Rocky Mountain J. Math. 1 (1971), 375382.Google Scholar
[3]Cooper, C. D. H., ‘Power automorphism of a group’, Math. Z. 107 (1968), 335356.Google Scholar
[4]Huppert, B., ‘Über das Produkt von paarweise vertauschbaren zyklischen Gruppen’, Math. Z. 58 (1953), 243264.Google Scholar
[5]Itô, N. and Szép, J., ‘Über die Quasinormalteiler von endlichen Gruppen’, Acta Sci. Math. (Szeged) 23 (1962), 168170.Google Scholar
[6]Maier, R. and Schmid, P., ‘The embedding of permutable subgroups in finite groups’, Math. Z. 131 (1973), 269272.Google Scholar
[7]Ore, O., ‘On the application of structure theory to groups’, Bull. Amer. Math. Soc. 44 (1938), 801806.Google Scholar
[8]Robinson, D. J. S., A course in the theory of groups, Graduate Texts in Math. 80, 2nd edition (Springer, New York, 1996).Google Scholar
[9]Schmidt, R., Subgroup lattices of groups (Walter de Gruyter, Berlin, 1994).Google Scholar
[10]Stonehewer, S. E., ‘Permutable subgroups of infinite groups’, Math. Z. 125 (1972), 116.Google Scholar
[11]Stonehewer, S. E., ‘Permutable subgroups of some finite p-groups’, J. Austral. Math. Soc. 16 (1973), 9097.Google Scholar
[12]Stonehewer, S. E., ‘Permutable subgroups of some finite permutation groups’, Proc. London Math. Soc. (3) 28 (1974), 222236.Google Scholar
[13]Thompson, J. G., ‘An example of core-free permutable subgroups of p-groups’, Math. Z. 96 (1967), 226227.Google Scholar