Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T01:50:07.913Z Has data issue: false hasContentIssue false

Conjugates of differentiable flows

Published online by Cambridge University Press:  09 April 2009

Gordon G. Johnson
Affiliation:
Virginia Polytechnic Institute & State UniversityBlacksburg, Virginia 24601, U.S.A.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The work in this paper is directed at the question: What differentiable flows on [0, 1] [1] are conjugates of linear fractional flows on [0, 1]?

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1972

References

[1]Fort, M. K. Jr, ‘The embedding of homeomorphisms in flows’, Proc. Amer. Math. Soc. 6 (1955), 96967. MR18, 326.CrossRefGoogle Scholar
[2]Fine, N. J. and Schweigert, F. F., ‘On the group of homeomorphisms of an arc’, Ann. of Math. (2) 62 (1955), 237253, MR17, 288.CrossRefGoogle Scholar
[3]Foland, N. E. and Utz, W. R., ‘The embedding of discrete flows in continuous flows’, Proc. Internat. Sympos. Ergodic Theory (Tulane Univer., New Orleans, La., 1961, Academic Press, New York, 1963, pp. 121139), MR 28 # 3412.Google Scholar
[4]Lam, P. F., The problem of embedding a homeomorphism in a flow subject to differentiability conditions (Ph. D. Thesis, Yale University 1967).Google Scholar