Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-22T23:13:49.270Z Has data issue: false hasContentIssue false

Congruences on simple regular ω-semigroups

Published online by Cambridge University Press:  09 April 2009

G. R. Baird
Affiliation:
University of Western OntarioLondon 72, Canada.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The set E of idempotents of a semigroup S can be partially ordered by defining e ≦ f if and only if . If E = {ei: i = 0,1, …} and under this ordering e0 > e1 > e2, …, then we call S an ω-semigroup. Munn [7] has given a complete classification of simple regular ω-semigroups in terms of groups and group homomorphisms.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1972

References

[1]Baird, G. R., ‘On a sublattice of the lattice of congruences on a simple regular ω-semigroup’, J. Aust. Math. Soc. 13 (1972), 461471.CrossRefGoogle Scholar
[2]Clifford, A. H. and Preston, G. B., The algebraic theory of semigroups, Volume I (Math. Surveys, Number 7, Amer. Math. Soc. 1961).Google Scholar
[3]Clifford, A. H. and Preston, G. B., The algebraic theory of semigroups, Volume II (Math. Surveys, Number 7, Amer. Math. Soc. 1967).Google Scholar
[4]Lallement, G., ‘Congruences et équivalences de Greensur un demi-group régulier’. C. R. Acad. Sc. Paris Serie A262 (1966), 613616.Google Scholar
[5]Munn, W. D., ‘A class of irreducible matrix representations of an arbitrary inverse semigroup’, Proc. Glasgow Math. Assoc. 5 (1961), 4148.CrossRefGoogle Scholar
[6]Munn, W. D., ‘The lattice of congruences on a bisimple ω-semigroup’, Proc. Roy. Soc. Edinburgh 67 (1966), 175184.Google Scholar
[7]Munn, W. D., ‘Regular ω-semigroups,’ Glasgow Math. J. 9 (1968), 4666.CrossRefGoogle Scholar
[8]Munn, W. D. and Reilly, N. R., ‘Congruences on bisimple ω-semigroups,’ Proc. Glasgow Math. Assoc. 9 (1966), 184922.CrossRefGoogle Scholar
[9]Reilly, N. R. and Scheiblich, H. E., ‘Congruences on regular semigroups,’ Pacific. J. Math. 23 (1967), 349360.CrossRefGoogle Scholar
[10]Reilly, N. R., ‘Bisimple ω-semigroups’, Proc. Glasgow Math. Assoc. 7 (1966), 160167.CrossRefGoogle Scholar