Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T00:12:57.363Z Has data issue: false hasContentIssue false

Congruence-free right simple semigroups

Published online by Cambridge University Press:  09 April 2009

P. G. Trotter
Affiliation:
University of Tasmania, Hobart, Australia.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Congruence-free right simple semigroups with idempotents are simple groups or have order 2. It is shown in this paper that there exist congruence-free simple semigroups without idempotents. Some properties of congruences on right simple semigroups, expressed mainly in terms of their unitary and left unitary subsemigroups, are determined. These are used to provide characterizations of congruence-free right simple semigroups.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1977

References

Clifford, A. H. and Preston, G. B. (1961 and 1967), The algebraic theory of semigroups, Vols. 1 and II, Amer. Math. Soc. Math. Surveys 7.Google Scholar
Mielke, B. W. (1972), ‘Regular congruences on Croisot-Teissier and Baer-Levi semigroups’, J. Math. Soc. Japan 24, 539551.CrossRefGoogle Scholar
Munn, W. D. (1974), ‘Congruence-free inverse semigroups’, Quart. J. Math. Oxford (2) 25, 463484.CrossRefGoogle Scholar
Munn, W. D. (1975), ‘A note on congruence-free inverse semigroups’, Quart. J. Math. Oxford (2) 26, 385387.CrossRefGoogle Scholar
Schein, B. M. (1966), ‘Homomorphisms and subdirect decompositions of semigroups’, Pacific J. Math. 17, 529547.CrossRefGoogle Scholar
Tamura, T. (1956), ‘Indecomposable completely simple semigroups except groups’, Osaka Math. J. 8, 3542.Google Scholar
Teissier, M. (1951), ‘Sur les équivalences régulières dans les demi-groupes’, C. R. Acad. Sci. Paris 232, 19871989.Google Scholar
Teissier, M. (1953), ‘Sur les demi-groupes ne contenant pas d'élément idempotent’, C. R. Acad. Sci. Paris 237, 13751377.Google Scholar
Trotter, P. G. (1974), ‘Congruence-free inverse semigroups’, Semigroup Forum 9, 109116.CrossRefGoogle Scholar
Trotter, P. G. (1976), ‘Congruence-free regular semigroups with zero’, Semigroup Forum 12, 15.CrossRefGoogle Scholar