Published online by Cambridge University Press: 09 April 2009
Let m, n be infinite cardinals such that m < n, and let X be a set of cardinality m. Within the symmetric inverse semigroup on X the elements whose domain and range have complements of cardinality m form an inverse semigroup T. The closure Eω of the semilattice E of idempotents of T is a fundamental bismple inverse semigroup. Its maximum congruence is described. The quotient of Eο by this maximum congruence is a bisimple, congruence is a bisimple, congruence-free inverse semigroup.