Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-22T23:18:01.083Z Has data issue: false hasContentIssue false

Conditionally convergent spectral expansions

Published online by Cambridge University Press:  09 April 2009

D. R. Smart
Affiliation:
University of Western Australia, Perth.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We will consider a reflexive Banach space 𝔅, with real or complex scalars, and a bounded operator in 𝔅 with a real spectrum.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1960

References

[1]Dunford, N.; Spectral Operators, Pacific Journal of Mathematics 4 (1954) 321354.Google Scholar
[2]Hille, E. and Tamarkin, J. D., On the theory of Fourier transforms, Bulletin of the American Mathematical Society 39 (1933), 768774.CrossRefGoogle Scholar
[3]Loomis, L. H., Abstract Harmonic Analysis, New York (1953), § 26 F, G.Google Scholar
[4]Lorch, E. R., Means of Iterated transformations in reflexive vector spaces, Bulletin of the American Mathematical Society 45 (1939), 945947.CrossRefGoogle Scholar
[5]Lorch, E. R., On a calculus of operators in reflexive vector spaces, Transactions of the American Mathematical Society 45 (1939), 217234, Theorem 3.2.Google Scholar
[6]von Neumann, J., Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren, Mathematische Annalen, 102 (1930), 49131.CrossRefGoogle Scholar
[7]von Neumann, J., Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Mathematische Nachrichten 4 (1951), 258281.CrossRefGoogle Scholar
[8]Riesz, F. and Sz.-Nagy, B., Leçons d'analyse fonctionnelle, 2e ed., Budapest, 1953.Google Scholar
[9]Rutovitz, D., On the LD-convergence of eigenfunction expansions, Quarterly Journal of Mathematics, (2) 7 (1956) 2438.CrossRefGoogle Scholar
[10]Smart, D. R., Eigenfunction expansions in LD and C, Illinois Journal of Mathematics 3 (1959) 8297.CrossRefGoogle Scholar
[11]Taylor, A. E., Introduction to functional analysis, New York, (1958).Google Scholar
[12]Zygmund, A., Trigonometrical series, Warsaw (1935).Google Scholar
[13]Graves, L. M., Riemann integration and Taylor's theorem in general analysis, Transactions of the American Mathematical Society 29 (1927), 163177.Google Scholar