Published online by Cambridge University Press: 09 April 2009
For the Weyl algebra A(k) and each finite dimensional division ring D over k, there exists a simple A(k)-module whose commuting ring is D.
It has been known for some time that if A(k) denotes the Weyl algebra over a field k of characteristic zero, the commuting ring of a simple A(k)-module is a division algebra finite dimensional over k (see the introduction of [1]). Which division algebras actually appear? Quebbemann [1] showed that if D is a finite dimensional division algebra whose center is k, then it occurs as a commuting ring. We complete this circle of ideas by showing that any D appears: a division algebra over k appears as the commuting ring of a simple A(k)-module if and only if it is finite dimensional over k.