Published online by Cambridge University Press: 09 April 2009
Let ℜ be the class of commutative rings R with comparable regular elements, that is, given two non zero-divisors in R, one divides the other. Applying the notion of V-valuation due to Harrison and Vitulli, we define the class V-val of V-valuated rings, which is contained in ℜ and contains the class of Manis valuation rings. We prove that these inclusions of classes are both proper. We investigate Prüfer rings inside ℜ, showing that there exist Prüfer rings which lie in ℜ but not in V-val; we prove that a ring R is a Prüfer valuation ring if and only if it is Prüfer and V-valuated, if and only if its lattice of regular ideals is a chain. Finally, we introduce and investigate the ideal I∞ of a ring R ∈ ℜ, which corresponds to the counterimage of ∞, whenever R is V-valuated.