Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T00:32:25.166Z Has data issue: false hasContentIssue false

Coefficients of differentially algebraic series

Published online by Cambridge University Press:  09 April 2009

Vichian Laohakosol
Affiliation:
Department of Mathematics Kasetsart UniversityBangkok 10900, Thailand
Kannika Kongsakorn
Affiliation:
Department of Mathematics Kasetsart UniversityBangkok 10900, Thailand
Patchara Ubolsri
Affiliation:
Department of Mathematics Kasetsart UniversityBangkok 10900, Thailand
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An Eisenstein-like criterion is proved for power series with algebraic coefficients satisfying algebraic differential equations of a certain general kind. The proof is elementary and the result extends earlier results of Hurwitz, Pólya and Popken

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1990

References

[1]Hurwitz, A., ‘Sur le développement des fonctions satisfaisant à une équation différentielle algébrique’, Ann. Sci. Ècole Norm. Sup. (4) 6 (1889), 327332.CrossRefGoogle Scholar
[2]Kakeya, S., ‘On a power series with rational coefficients satisfying an algebraic differential equation’, Sci. Rep. Tôhoku Imp. Univ. 4 (1915), 720.Google Scholar
[3]Kongsakorn, K. and Laohakosol, V., ‘A generalization of Eisenstein's theorem’, Bull. Inst. Math. Acad. Sinica 14 (1986), 149162.Google Scholar
[4]Laohakosol, V., Kongsakorn, K. and Ubolsri, P., ‘Denominators in the coefficients of power series satisfying linear differential equations’, to appear.Google Scholar
[5]Lipschitz, L. and Rubel, L. A., ‘A gap theorem for power series solutions of algebraic differential equations’, Amer. J. Math. 108 (1986), 11931214.CrossRefGoogle Scholar
[6]Mahler, K., ‘On formal power series as integrals of algebraic differential equations’, Rend. Accad. Naz. Lincei 50 (1971), 7689.Google Scholar
[7]Mahler, K., ‘Lectures on transcendental numbers’, Lecture Notes in Math., Vol. 546, (Springer-Verlag, Berlin-Heidelberg-New York, 1976).Google Scholar
[8]Pincherle, S., ‘Sur la nature arithmétique des coefficients des séries intégrales des équations différentielles linéaires’, J. Reine Angew. Math. 103 (1888), 8486.CrossRefGoogle Scholar
[9]Pólya, G., ‘Über das Anwachsen von ganzen Funktionen; die einer Differentialgleichung genugen,’ Vierteljahrschr. Naturforsch. Gesellschaft Zurich 61 (1916), 531545.Google Scholar
[10]Pólya, G. and Szegö, G., Problems and theorems in analysis, Vol. II, (Springer-Verlag, New York-Heidelberg-Berlin, 1976).CrossRefGoogle Scholar
[11]Popken, J., Über arithmetische Eigenschaften Analytischer Funktionen, (North-Holland, Amsterdam, 1935).Google Scholar
[12]Popken, J., ‘An arithmetical property of a class of Dirichlet series,’ Indag. Math. 7 (1945/1946), 105122.Google Scholar
[13]Sibuya, Y. and Sperber, S., ‘Arithmetic properties of power series solutions of algebraic differential equations,’ Ann. of Math. 113 (1981), 111157.CrossRefGoogle Scholar